[1] 张泽宇, 王铁君, 郭晓然, 等. AI绘画研究综述[J]. 计算机科学与探索, 2024, 18(6): 1404-1420.
ZHANG Z Y, WANG T J, GUO X R, et al. Survey of AI painting[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1404-1420.
[2] OPENAI. GPT-4 technical report[J]. arXiv:2303.08774, 2023.
[3] 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 等. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45.
CHEN J S, ABUDUKELIMU H, LIANG Y Z, et al. Review of application of deep learning in symbolic music generation[J]. Computer Engineering and Applications, 2023, 59(9): 27-45.
[4] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013.
[5] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
[6] RAMESH A, DHARIWAL P, NICHOL A, et al. Hierarchical text-conditional image generation with CLIP latents[J]. arXiv:2204.06125, 2022.
[7] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
[8] 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792.
XU G X, FENG C, MA F. Review of medical image segmentation based on UNet[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792.
[9] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. arXiv:2006.11239, 2020.
[10] NICHOL A Q, DHARIWAL P. Improved de-noising diffusion probabilistic models[C]//Proceedings of the International Conference on Machine Learning, 2021: 8162-8171.
[11] SONG J M, MENG C L, ERMON S. Denoising diffusion implicit models[J]. arXiv:2010.02502, 2020.
[12] WANG Z D, JIANG Y F, ZHENG H J, et al. Patch diffusion: faster and more data-efficient training of diffusion models[C]//Advances in Neural Information Processing Systems, 2024.
[13] DIAO Z H, GUO P L, ZHANG B H, et al. Maize crop row recognition algorithm based on improved UNet network[J]. Computers and Electronics in Agriculture, 2023, 210: 107940.
[14] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10674-10685.
[15] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing, 2018: 3-11.
[16] ZHANG J W, ZHANG Y C, JIN Y Z, et al. MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation[J]. Health Information Science and Systems, 2023, 11(1): 13.
[17] QIN X B, ZHANG Z C, HUANG C Y, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[22] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[J]. arXiv:1710.05941, 2017.
[23] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[24] CHEN Z X, HE Z W, LU Z M. DEA-net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 2024, 33: 1002-1015.
[25] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856.
[26] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6629-6640.
[27] GONG X Y, CHANG S Y, JIANG Y F, et al. AutoGAN: neural architecture search for generative adversarial networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3223-3233. |