[1] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
[2] 宋杰, 许冰, 杨淼中. 基于自适应步长果蝇优化算法图像分割[J]. 计算机工程与应用, 2020, 56(4): 184-190.
SONG J, XU B, YANG M Z. Image segmentation based on adaptive step size fruit fly optimization algorithm[J]. Computer Engineering and Applications, 2020, 56(4): 184-190.
[3] MA G, YUE X. An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104960.
[4] 邢致恺, 贾鹤鸣, 宋文龙. 基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J]. 自动化学报, 2021, 47(2): 363-377.
XING Z K, JIA H M, SONG W L. Levy flight trajectory-based salp swarm algorithm for multilevel thresholding image segmentation[J]. Acta Automatica Sinica, 2021, 47(2): 363-377.
[5] GHAREHCHOPOGH F S, IBRIKCI T. An improved African vultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation[J]. Multimedia Tools and Applications, 2024, 83(6): 16929-16975.
[6] 陈忠云, 张达敏, 辛梓芸. 多子群的共生非均匀高斯变异樽海鞘群算法[J]. 自动化学报, 2022, 48(5): 1307-1317.
CHEN Z Y, ZHANG D M, XIN Z Y. Multi-subpopulation based symbiosis and non-uniform Gaussian mutation salp swarm algorithm[J]. Acta Automatica Sinica, 2022, 48(5): 1307-1317.
[7] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[8] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[9] KHISHE M, MOSAVI M R. Chimp optimization algorithm[J]. Expert Systems with Applications, 2020, 149: 113338.
[10] ABUALIGAH L, DIABAT A, MIRJALILI S, et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376: 113609.
[11] ZHONG C, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[12] DEHGHANI M, MONTAZERI Z, TROJOVSKá E, et al. Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2023, 259: 110011.
[13] 卢梦蝶, 鲁海燕, 侯新宇, 等. 融合柯西变异的鸟群与算术混合优化算法[J]. 计算机工程与应用, 2023, 59(14): 62-75.
LU M D, LU H Y, HOU X Y, et al. Hybrid algorithm of bird swarm algorithm and arithmetic optimization algorithm based on Cauchy mutation[J]. Computer Engineering and Applications, 2023, 59(14): 62-75.
[14] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报 (自然科学版), 2024, 64(4): 668-678.
WANG Z Y, WANG L. Improved monarch butter fly optimization algorithm and its engineering application[J]. Journal of Tsinghua University (Science & Technology), 2024, 64(4): 668-678.
[15] 陈淼, 崔倩倩, 赵秋丽, 等. 改进的矮猫鼬优化算法求解约束优化问题[J/OL]. 计算机工程与应用[2024-05-02]. http://kns.cnki.net/kcms/dtail/11.2127.TP.20240312.1317.002.html.
CHEN M, CUI Q Q, ZHAO Q L, et al. Improved dwarf mongoose optimization algorithm for solving constrained optimization problems[J/OL]. Computer Engineering and Applications[2024-05-02]. http://kns.cnki.net/kcms/dtail/11.2127.TP.
20240312.1317.002.html.
[16] 赵晓妍, 宋威. 聚集度指标引导的注意力学习粒子群优化算法[J]. 计算机科学与探索, 2023, 17(8): 1852-1866.
ZHAO X Y, SONG W. Attention learning particle swarm optimization algorithm guided by aggregation indicator[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1852-1866.
[17] 赵世杰, 张红易, 马世林. 领导者引导与支配解进化的多目标矮猫鼬算法[J]. 计算机科学与探索, 2024, 18(2): 403-424.
ZHAO S J, ZHANG H Y, MA S L. Multi-objective dwarf mongoose optimization algorithm with leader guidance and dominated solution evolution mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 403-424.
[18] XUE J, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[19] 潘志远, 卜凡亮. 基于蜣螂算法优化的DV-Hop定位算法[J]. 电子测量与仪器学报, 2023, 37(7): 33-41.
PAN Z Y, BU F L. DV-Hop localization algorithm optimized based on dung beetle optimizer[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(7): 33-41.
[20] 李斌, 高鹏, 郭自强. 改进蜣螂算法优化LSTM的光伏阵列故障诊断[J/OL]. 电力系统及其自动化学报[2024-04-28]. https://doi.org/10.19635/j.cnki.csu-epsa.001317.
LI B, GAO P, GUO Z Q. Improved dung beetle optimizer to optimize LSTM for photovoltaic array fault diagnosis[J]. Proceedings of the CSU-EPSA[2024-04-28]. https://doi.org/10.19635/j.cnki.csu-epsa.001317.
[21] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用, 2023, 59(22): 92-110.
PAN J C, LI S B, ZHOU P, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22): 92-110.
[22] LI Y, SUN K, YAO Q, et al. A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm[J]. Energy, 2024, 286: 129604.
[23] 匡鑫, 阳波, 马华, 等. 多策略改进的蜣螂优化算法[J/OL]. 计算机工程[2024-05-22]. http://kns.cnki.net/kcms/detail/31.1289.TP.20240301.1635.007.html.
KUANG X, YANG B, MA H, et al. Multi-strategy improved dung beetle optimization algorithm[J/OL]. Computer Engineering[2024-05-22]. http://kns.cnki.net/kcms/detail/31.1289.TP.20240301.1635.007.html.
[24] P?UN G. Computing with membranes[J]. Journal of Computer and System Sciences, 2000, 61(1): 108-143.
[25] MATíN-VIDE C, P?UN G, PAZOS J, et al. Tissue P systems[J]. Theoretical Computer Science, 2003, 296(2): 295-326.
[26] IONESCU M, P?UN G, YOKOMORI T. Spiking neural P systems[J]. Fundamenta Informaticae, 2006, 71(2/3): 279-308.
[27] OROZCO-ROSAS U, MONTIEL O, SEPúLVEDA R. Mobile robot path planning using membrane evolutionary artificial potential field[J]. Applied Soft Computing, 2019, 77: 236-251.
[28] DONG W, ZHOU K, QI H, et al. A tissue P system based evolutionary algorithm for multi-objective VRPTW[J]. Swarm and Evolutionary Computation, 2018, 39: 310-322.
[29] SONG H, HUANG Y, SONG Q, et al. Feature selection algorithm based on P systems[J]. Natural Computing, 2023, 22(1): 149-159.
[30] LIU X, WANG L, QU J, et al. A complex chained P system based on evolutionary mechanism for image segmentation[J]. Computational Intelligence and Neuroscience, 2020: 6524919.
[31] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks, 1995: 1942-1948.
[32] SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, 1998: 69-73.
[33] NICKABADI A, EBADZADEH M M, SAFABAKHSH R. A novel particle swarm optimization algorithm with adaptive inertia weight[J]. Applied Soft Computing, 2011, 11(4): 3658-3670.
[34] HASHIM F A, HOUSSEIN E H, HUSSAIN K, et al. Honey badger algorithm: new metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2022, 192: 84-110.
[35] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946.
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 930-946.
[36] YAO X, LIU Y, LIN G M. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102. |