计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 309-320.DOI: 10.3778/j.issn.1002-8331.2403-0399

• 图形图像处理 • 上一篇    下一篇

PDM-YOLO:渐进式动态锚点距离调控侧扫声呐图像目标检测

郑世民,张印辉,何自芬,张涛,陈光晨   

  1. 1昆明理工大学 机电工程学院,昆明 650500
    2中国船舶重工集团公司第七〇五研究所昆明分部,昆明 650118
  • 出版日期:2025-07-01 发布日期:2025-06-30

PDM-YOLO:Progressive Dynamic Vertex Distance Manipulation Side-Scan Sonar Image Object Detection

ZHENG Shimin, ZHANG Yinhui, HE Zifen, ZHANG Tao, CHEN Guangchen   

  1. 1.School of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
    2.Kunming Branch of the 705 Research Institute of CSIC, Kunming 650118, China
  • Online:2025-07-01 Published:2025-06-30

摘要: 目标检测;声呐图像;注意力;渐进式感知;损失函数

Abstract: object detection; sonar image; attention; progressive perception; loss function[1] 汤寓麟, 李厚朴, 张卫东, 等. 侧扫声纳检测沉船目标的轻量化DETR-YOLO法[J]. 系统工程与电子技术, 2022, 44(8): 2427-2436. 
TANG Y L, LI H P, ZHANG W D, et al. Lightweight DETR-YOLO method for detecting shipwreck target in side-scan sonar[J]. Systems Engineering and Electronics, 2022, 44(8): 2427-2436. 
[2] 郭戈, 王兴凯, 徐慧朴. 基于声呐图像的水下目标检测、识别与跟踪研究综述[J]. 控制与决策, 2018, 33(5): 906-922. 
GUO G, WANG X K, XU H P. Review on underwater target detection, recognition and tracking based on sonar image[J]. Control and Decision, 2018, 33(5): 906-922. 
[3] 王强, 孟晨, 王成, 等. 基于分数阶Gabor变换的LFM回波信号压缩采样方法[J]. 系统工程与电子技术, 2022, 44(4): 1103-1112. 
WANG Q, MENG C, WANG C, et al. Compressive sampling method based on fractional Gabor transform for LFM echo signals[J]. Systems Engineering and Electronics, 2022, 44(4): 1103-1112. 
[4] LENG X G, JI K F, KUANG G Y. Ship detection from raw SAR echo data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5207811. 
[5] YAN Z L, CUI X W, GAO Y. Acoustic injection method based on weak echo signals for leak detection and localization in gas pipelines[J]. Applied Acoustics, 2023, 211: 109577.
[6] LANE D M, STONER J P. Automatic interpretation of sonar imagery using qualitative feature matching[J]. IEEE Journal of Oceanic Engineering, 1994, 19(3): 391-405. 
[7] MAUSSANG F, CHANUSSOT J, HETET A, et al. Mean-standard deviation representation of sonar images for echo detection: application to SAS images[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 956-970. 
[8] TAO W L, LIU Y. Combined imaging matching method of side scan sonar images with prior position knowledge[J]. IET Image Processing, 2018, 12(2): 194-199. 
[9] 李庆武, 石丹, 霍冠英. 基于Contourlet变换的海底声纳图像特征提取与分类[J]. 海洋学报, 2011, 33(5): 163-168. 
LI Q W, SHI D, HUO G Y. Feature extraction and classification of seabed sonar Images Based on Contourlet transform[J]. Acta Oceanologica Sinica, 2011, 33(5): 163-168. 
[10] FAN Z M, XIA W J, LIU X, et al. Detection and segmentation of underwater objects from forward-looking sonar based on a modified Mask RCNN[J]. Signal, Image and Video Processing, 2021, 15(6): 1135-1143. 
[11] 刘扬, 田猛, 曹珂境, 等. 面向声呐图像水下目标分类的类脑SNN研究[J]. 计算机工程与应用, 2023, 59(10): 204-212.
LIU Y, TIAN M, CAO K J, et al. Research on brain-inspired SNN for underwater target classification of sonar images[J]. Computer Engineering and Applications, 2023, 59(10): 204-212.
[12] ZHU X Y, LIANG Y S, ZHANG J L, et al. STAFNet: swin transformer based anchor-free network for detection of forward-looking sonar imagery[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval. New York: ACM, 2022: 443-450. 
[13] WANG Y M, LIU J X, YU S Q, et al. Underwater object detection based on YOLO-v3 network[C]//Proceedings of the 2021 IEEE International Conference on Unmanned Systems. Piscataway: IEEE, 2021: 571-575. 
[14] LI J W, CAO X. Target recognition and detection in side-scan sonar images based on YOLO v3 model[C]//Proceedings of the 2022 41st Chinese Control Conference. Piscataway: IEEE, 2022: 7186-7190. 
[15] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 
[16] KIM J, CHOI J W, KWON H, et al. The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images[J]. The Journal of the Acoustical Society of Korea, 2018, 37(2): 118-128. 
[17] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
[18] XU Y C, WANG X M, WANG K H, et al. Underwater sonar image classification using generative adversarial network and convolutional neural network[J]. IET Image Processing, 2020, 14(12): 2819-2825. 
[19] 李书东. 基于深度学习的侧扫声呐条带图像沉船探测方法研究[D]. 连云港: 江苏海洋大学, 2022. 
LI S D. Research on shipwreck detection method from side-scan sonar image based on deep learning[D]. Lianyungang: Jiangsu Ocean University, 2022. 
[20] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021. 
[21] 李宝奇, 黄海宁, 刘纪元, 等. 基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型[J]. 电子与信息学报, 2021, 43(10): 2854-2862. 
LI B Q, HUANG H N, LIU J Y, et al. Synthetic aperture sonar underwater multi-scale target efficient detection model based on improved single shot detector[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2854-2862.
[22] 陶洋, 朱腾, 钟邦乾, 等. RepViTS-YOLOX: 水下模糊及遮挡目标检测方法[J]. 计算机工程与应用, 2024, 60(13): 200-208. 
TAO Y, ZHU T, ZHONG B Q, et al. RepViTS-YOLOX: underwater blurred and occluded target detection method[J]. Computer Engineering and Applications, 2024, 60(13): 200-208.
[23] 辛世澳, 葛海波, 袁昊, 等. 改进YOLOv7的轻量化水下目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 88-99. 
XIN S A, GE H B, YUAN H, et al. Improved lightweight underwater target detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(3): 88-99. 
[24] 陈禹蒲, 马晓川, 李璇. 基于YOLOv3锚框优化的侧扫声呐图像目标检测[J]. 信号处理, 2022, 38(11): 2359-2371. 
CHEN Y P, MA X C, LI X. Target detection in side scan sonar images based on YOLOv3 anchor boxes optimization[J]. Journal of Signal Processing, 2022, 38(11): 2359-2371. 
[25] 汤寓麟, 边少锋, 翟国君, 等. 侧扫声呐检测沉船目标的改进YOLOv5法[J]. 武汉大学学报(信息科学版), 2024, 49(6): 977-985. 
TANG Y L, BIAN S F, ZHAI G J, et al. An improved YOLOv5 method for shipwreck target detection by side-scan sonar images[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 977-985. 
[26] CHENG Z, HUO G Y, LI H S. A multi-domain collaborative transfer learning method with multi-scale repeated attention mechanism for underwater side-scan sonar image classification[J]. Remote Sensing, 2022, 14(2): 355. 
[27] 胡宏洋. 基于注意力感知的声呐图像轻量级目标检测网络研究[D]. 杭州: 杭州电子科技大学, 2022. 
HU H Y. Research on attention-aware lightweight target detection network for sonar images[D]. Hangzhou: Hangzhou Dianzi University, 2022. 
[28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 
[29] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19. 
[30] GE C J, DING X H, TONG Z, et al. Advancing vision transformers with group-mix attention[J]. arXiv:2311.15157, 2023.
[31] HUO G Y, WU Z Y, LI J B. Underwater object classification in sidescan sonar images using deep transfer learning and semisynthetic training data[J]. IEEE Access, 2020, 8: 47407-47418. 
[32] 周彦, 陈少昌, 吴可, 等. SCTD1.0: 声呐常见目标检测数据集[J]. 计算机科学, 2021, 48(S2): 334-339. 
ZHOU Y, CHEN S C, WU K, et al. SCTD 1.0: sonar common target detection dataset[J]. Computer Science, 2021, 48(S2): 334-339. 
[33] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. 
[34] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[J]. arXiv:2103.02907, 2021.
[35] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.