计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 166-175.DOI: 10.3778/j.issn.1002-8331.2401-0105

• 模式识别与人工智能 • 上一篇    下一篇

MC_SVR滚动模型对股票价格的预测研究

陈梓海,黄香香   

  1. 东莞理工学院 计算机科学与技术学院,广东 东莞 523808
  • 出版日期:2025-05-15 发布日期:2025-05-15

Prediction Research on Stock Price of MC_SVR Rolling Model

CHEN Zihai, HUANG Xiangxiang   

  1. School of Computer Science and Technology, Dongguan University of Technology, Dongguan, Guangdong 523808, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 为了解决单一的可尔可夫链(Markov chain,MC)模型在预测股价时出现预测状态不准确,使得预测股价与实际股价相对误差过大,从而导致模型预测效果较差等问题,引入支持向量回归(support vector regression,SVR)模型,并结合滚动预测的思想,形成MC_SVR滚动模型。通过海泰发展的股票价格数据构建MC_SVR滚动模型,采用网格搜索法确定高斯核函数,惩罚系数[C=]204.003?906,核函数参数[γ=]0.003?906和损失函数参数[ε=]0.1。实验结果表明,MC_SVR滚动模型有效提高了预测结果的精度,相比于SVR模型和LSTM模型,平均绝对百分比误差[δ]分别降低了0.16和0.01个百分点,均方根误差RMSE分别降低了0.000?7和0.001?6,决定系数R2分别提高了0.000?8和0.001?8,DA统计量比SVR模型降低了1.908?7,比LSTM模型提高了8.227?8,从整体上表面MC_SVR滚动模型具有不错的预测精度。在新增10只股票的预测研究中,MC_SVR滚动模型均具有可行性和有效性。

关键词: 马尔可夫链, 核函数, 支持向量回归, 股票收盘价, 股价预测

Abstract: In order to solve the problem that the prediction state of a single MC (Markov chain) model is inaccurate in predicting stock prices, which causes the large relative error between the predicted stock price and the actual one, and results in poor prediction effect of the model, this paper introduces the SVR (support vector regression) model. By combined with the idea of rolling prediction, this paper obtains the MC_SVR rolling model. The MC_SVR rolling model is constructed through the stock price data of Haitai Development, and the grid search method is used to determine the Gaussian kernel function, with the penalty coefficient C=204.003?906, the kernel function parameter [γ]=0.003?906, and the loss function parameter [ε]=0.1. The experimental results indicate that the MC_SVR rolling model effectively improves the accuracy of prediction results. Compared with the SVR model and the LSTM model, the average absolute percentage error [δ] is reduced by 0.16 and 0.01?percentage points respectively, and the root mean square error (RMSE) is reduced by 0.000?7 and 0.001?6 respectively. The coefficient of determination R2 is increased by 0.000?8 and 0.001?8 respectively, and the DA statistic is 1.908?7 lower than that of the SVR model, and 8.227?8 higher than that of the LSTM model. Overall, it appears that the MC_SVR rolling model has good prediction accuracy. In the prediction research of 10 new stocks, the MC_SVR rolling model is feasible and effective.

Key words: Markov chain, kernel function, support vector regression, stock closing price, prediction of stock price