计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (23): 114-124.DOI: 10.3778/j.issn.1002-8331.2305-0458

• 模式识别与人工智能 • 上一篇    下一篇

基于双重注意力与精确特征分布匹配的车辆重识别

徐岩,潘旭光,郭晓燕,刘香兰   

  1. 山东科技大学 电子信息工程学院,山东 青岛 266590
  • 出版日期:2023-12-01 发布日期:2023-12-01

Vehicle Re-Identification Based on Dual Attention and Exact Feature Distribution Matching

XU Yan, PAN Xuguang, GUO Xiaoyan, LIU Xianglan   

  1. College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • Online:2023-12-01 Published:2023-12-01

摘要: 为了解决目前车辆重识别方法细粒度特征提取能力弱、域泛化能力差的问题,提出了一种基于双重注意力与精确特征分布匹配的车辆重识别方法。提出一种新的双重注意力机制,使用WideResNet50与双重注意力模块构建多细粒度特征提取网络的前置部分,用于高效建模全局上下文信息并增强对车辆细粒度特征的提取能力。将基于精确特征分布匹配的风格迁移策略融入浅层主干来增强源域的域多样性,实现数据增广,从而有效提升车辆重识别的跨域性能和特征表达能力。提出了一种逐深度多尺度特征金字塔结构来加强特征提取,整合不同尺度特征层的多层次信息,并将该结构输出的车辆特征采用特征图分割的思想来突出局部细粒度信息,提升模型对车辆细粒度信息的敏感度。引入Tuplet边际损失来缓解最困难样本的过拟合问题。在两个大型基准车辆数据集VeRi-776和VehicleID上的实验结果表明,所提出算法在单域和跨域任务上都具有较好的重识别效果。

关键词: 双重注意力机制, 精确特征分布匹配, 多尺度特征金字塔, 车辆重识别, 深度学习

Abstract: In order to solve the problems of weak fine-grained feature extraction and poor domain generalization of current vehicle re-identification(Re-ID) methods, a vehicle Re-ID method based on dual attention and exact feature distribution matching is proposed. A new dual attention mechanism is proposed, using WideResNet50 with a dual attention module to construct the front part of a multi-fine grained feature extraction network for efficiency modelling global contextual information and enhancing the extraction capability of fine-grained features of vehicles. A style transfer strategy based on exact feature distribution matching is incorporated into the shallow backbone to enhance the domain diversity of the source domain and achieve data augmentation, thus effectively improving the cross-domain performance and feature representation capability of vehicle Re-ID. A depth-by-depth multi-scale feature pyramid structure is designed to enhance feature extraction, integrate multi-level information from different scale feature layers, and adopt the idea of feature map segmentation for the vehicle features output from this structure to highlight local fine-grained information and enhance the sensitivity of the model to vehicle fine-grained information. Tuplet margin loss is introduced to alleviate the overfitting problem of the most difficult samples. Experimental results on two large benchmark vehicle datasets, VeRi-776 and VehicleID, show that the proposed algorithm has good Re-ID results on both single-domain and cross-domain tasks.

Key words: dual attention mechanism, exact feature distribution matching, multi-scale feature pyramid, vehicle re-identification, deep learning