[1] MAFLA A, DEY S, BITEN A F, et al. Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 4023-4033.
[2] KANG C, KIM G, YOO S. Detection and recognition of text embedded in online images via neural context models[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017.
[3] ZHU Y, LIAO M, YANG M, et al. Cascaded segmentation-detection networks for text-based traffic sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(1): 209-219.
[4] ZHOU X, YAO C, WEN H, et al. East: an efficient and accurate scene text detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5551-5560.
[5] LIAO M, SHI B, BAI X. Textboxes++: a single-shot oriented scene text detector[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3676-3690.
[6] YULIANG L, LIANWEN J, SHUAITAO Z, et al. Detecting curve text in the wild: new dataset and new solution[J]. arXiv:1712.02170, 2017.
[7] CH’NG C K, CHAN C S. Total-text: a comprehensive dataset for scene text detection and recognition[C]//2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017: 935-942.
[8] XU Y, WANG Y, ZHOU W, et al. Textfield: learning a deep direction field for irregular scene text detection[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5566-5579.
[9] ZHU Y, DU J. Textmountain: accurate scene text detection via instance segmentation[J]. Pattern Recognition, 2021, 110: 107336.
[10] WANG W, XIE E, LI X, et al. Shape robust text detection with progressive scale expansion network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9336-9345.
[11] WANG W, XIE E, SONG X, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8440-8449.
[12] LIAO M, WAN Z, YAO C, et al. Real-time scene text detection with differentiable binarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 11474-11481.
[13] LIAO M, ZOU Z, WAN Z, et al. Real-time scene text detection with differentiable binarization and adaptive scale fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 919-931.
[14] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[15] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//European Conference on Computer Vision, 2016: 630-645.
[16] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.
[17] ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[18] BORGEFORS G. Distance transformations in arbitrary dimensions[J]. Computer Vision, Graphics, and Image Processing, 1984, 27(3): 321-345.
[19] ZHANG S X, ZHU X, HOU J B, et al. Deep relational reasoning graph network for arbitrary shape text detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9699-9708.
[20] SHENG T, CHEN J, LIAN Z. Centripetaltext: an efficient text instance representation for scene text detection[C]//Advances in Neural Information Processing Systems, 2021: 335-346.
[21] SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 761-769.
[22] GUPTA A, VEDALDI A, ZISSERMAN A. Synthetic data for text localisation in natural images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2315-2324.
[23] YAO C, BAI X, LIU W, et al. Detecting texts of arbitrary orientations in natural images[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1083-1090.
[24] LONG S, RUAN J, ZHANG W, et al. Textsnake: a flexible representation for detecting text of arbitrary shapes[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 20-36.
[25] YAO C, BAI X, LIU W. A unified framework for multioriented text detection and recognition[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4737-4749.
[26] NAYEF N, YIN F, BIZID I, et al. Icdar2017 robust reading challenge on multi-lingual scene text detection and script identification-RRC-MLT[C]//2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017: 1454-1459.
[27] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
[28] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[29] SMITH L N, TOPIN N. Super-convergence: very fast training of neural networks using large learning rates[C]//Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, 2019: 369-386.
[30] VATTI B R. A generic solution to polygon clipping[J]. Communications of the ACM, 1992, 35(7): 56-63.
[31] ZHANG S X, ZHU X, YANG C, et al. Adaptive boundary proposal network for arbitrary shape text detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1305-1314.
[32] ZHANG S X, ZHU X, CHEN L, et al. Arbitrary shape text detection via segmentation with probability maps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 2736-2750. |