计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (21): 222-230.DOI: 10.3778/j.issn.1002-8331.2207-0279
吉旭瑞,刘静,吉辉,张帅,曹慧
JI Xurui, LIU Jing, JI Hui, ZHANG Shuai, CAO Hui
摘要: 在新型冠状病毒肺炎诊断任务中,胸部X射线(chest X-ray,CXR)的无关信息会影响模型分类决策,利用分割网络先将肺实质提取出来再进行分类是一种有效的途径。提出一种两阶段的分类模型Res-IgSa,使用ResUNet网络先提取CXR图像的肺实质,分类网络以ResNet50为基本框架,引入改进全局上下文模块(WGC)以及空间注意力模块(CSA)。WGC在全局上下文的基础上引入通道规范化以及门控自适应单元,以更好地调整通道间的关系;CSA引入分组卷积,通过分组数来控制模型的容量,WGC和CSA可以实现特征图间的互补。在COVID-19 Radiography DatabaseV5数据集上进行了大量的实验,与原论文采用相同的方法相比,Res-IgSa实现了更好的分类效果,准确率、精度、召回率以及F1值分别达到了94.154%、94.157%、94.154%以及94.139%,并进行消融实验以及结果可视化进一步证明了该模型的有效性。