计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (21): 1-12.DOI: 10.3778/j.issn.1002-8331.2206-0127
刘财辉,刘地金
出版日期:
2022-11-01
发布日期:
2022-11-01
LIU Caihui, LIU Dijin
Online:
2022-11-01
Published:
2022-11-01
摘要: 离群点检测在数据挖掘中有非常广泛的应用,然而并不是所有的离群点检测问题都能用一种最优的方法去解决。针对不同的应用,需要用不同的方法,才能够最有效地解决实际问题。检测方法大致可以分为基于统计、基于聚类、基于邻近性(基于距离和基于密度)的方法。为了及时掌握当前基于邻近性技术的离群点检测方法的研究现状,通过整理和归纳,将代表性强的基于邻近性的离群点检测方法进行了介绍和评价,将其主要分为基于距离的方法和基于密度的方法,对所有提及的方法的应用场景、算法思想、能解决的问题以及各自的优缺点进行了详细的分析和归纳,指出目前存在的问题和对未来研究的发展方向。对开展邻近性的离群点检测研究具有重要意义。
刘财辉, 刘地金. 离群点检测的邻近性方法综述[J]. 计算机工程与应用, 2022, 58(21): 1-12.
LIU Caihui, LIU Dijin. Survey of Proximity Methods for Outlier Detection[J]. Computer Engineering and Applications, 2022, 58(21): 1-12.
[1] 黄彧.相似性度量的研究及其在数据挖掘中的应用[D].福州:福建师范大学,2009. HUANG Y.Research on similarity measure and its application in data mining[D].Fuzhou:Fujian Normal University,2009. [2] 刘凤,戴家佳,胡阳.基于局部密度离群点检测k-means算法[J].重庆工商大学学报(自然科学版),2021,38(4):30-35. LIU F,DAI J J,HU Y.The k-means algorithm based on local density outlier detection[J].Journal of Chongqing Technology & Business University(Natural Science Edition),2021,38(4):30-35. [3] HAN J W,KAMBER M.数据挖掘:概念与技术[M].范明,孟小峰,译.3版.北京:机械工业出版社,2012:186-188. HAN J W,KAMBER M.Data mining:concepts and techniques[M].FAN M,MENG X F.3rd ed.Beijing:China Machine Press,2012:186-188. [4] 吴小燕,刘强,朱成璋.社交网络中协同舆论欺诈检测方法应用研究[J].郑州大学学报(工学版),2022,43(2):7-14. WU X Y,LIU Q,ZHU C Z.Research on application of collaborative public opinion fraud detection method in social network[J].Journal of Zhengzhou University(Engineering Science),2022,43(2):7-14. [5] 胡永健,王宇飞,刘琲贝,等.人脸欺诈检测最新进展及典型方法[J].信号处理,2021,37(12):2261-2277. HU Y J,WANG Y F,LIU B B,et al.A survey on the latest development and typical methods of face anti-spoofing[J].Journal of Signal Processing,2021,37(12):2261-2277. [6] 刘少钦,唐爽,赵俊峰,等.基于扩展主题模型的异常医疗处方检测方法[J].计算机科学与探索,2020,14(1):30-39. LIU S Q,TANG S,ZHAO J F,et al.Extended topic model based abnormal medical prescription detection method[J].Journal of Frontiers of Computer Science and Technology,2020,14(1):30-39. [7] 马子健.面向公共安全的异常检测关键技术研究[D].北京:北京交通大学,2021. MA Z J.Research on key technology of anomaly detection for public security[D].Beijing:Beijing Jiaotong University,2021. [8] 施珮,匡亮,唐玥,等.基于改进SVDD算法的池塘水质数据流异常检测[J].农业工程学报,2021,37(24):249-256. SHI P,KUANG L,TANG Y,et al.Abnormal detection of aquaculture water quality data stream using an improved SVDD in pond[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(24):249-256. [9] 吕承侃,沈飞,张正涛,等.图像异常检测研究现状综述[J].自动化学报,2022,48(6):1402-1428. LV C K,SHEN F,ZHANG Z T,et al.Review of image anomaly detection[J].Acta Automatica Sinica,2022,48(6):1402-1428. [10] 顾兆军,郭靖轩.基于角色异常行为挖掘的内部威胁检测方法[J].计算机工程与设计,2020,41(10):2740-2746. GU Z J,GUO J X.Internal threat detection method based on role abnormal behavior mining[J].Computer Engineering and Design,2020,41(10):2740-2746. [11] 李楠,孙伯鑫,樊瑞,等.基于多维特征的终端区异常轨迹实时检测[J].安全与环境学报,2022,22(1):242-249. LI N,SUN B X,FAN R,et al.Research on real-time detection ofabnormal trajectory in terminal area based on multidimensional features[J].Journal of Safety Environment,2022,22(1):242-249. [12] 梅林,张凤荔,高强.离群点检测技术综述[J].计算机应用研究,2020,37(12):3521-3527. MEI L,ZHANG F L,GAO Q.Overview of outlier detection technology[J].Application Research of Computers,2020,37(12):3521-3527. [13] 周玉,朱文豪,房倩,等.基于聚类的离群点检测方法研究综述[J].计算机工程与应用,2021,57(12):37-45. ZHOU Y,ZHU W H,FANG Q,et al.Survey of outlier detection methods based on clustering[J].Computer Engineering and Applications,2021,57(12):37-45. [14] DANG T T,NGAN H Y T,LIU W.Distance-based [k]-nearest neighbors outlier detection method in large-scale traffic data[C]//2015 IEEE International Conference on Digital Signal Processing,2015:507-510. [15] KNORR E M,NG R T.Algorithms for mining distance based outliers in large data sets[C]//Proceedings of 24th International Conference on Very Large Databases,1998:392-403. [16] YANG X,LATECKI L J,POKRAJAC D.Outlier detection with globally optimal exemplar-based GMM[C]//Proceedings of the SIAM International Conference on Data Mining(SDM),2009:145-154. [17] SATMAN M H.A new algorithm for detecting outliers in linear regression[J].International Journal Statistics and Probability,2013,2(3):101-109. [18] RAMASWAMY S,RASTOGI R,KYUSEOK S.Efficient algorithms for mining outliers from large data sets[C]//Proceedings of ACM SIGMOD International Conference on Management Data,May 2000:427-438. [19] KNORR E M,NG R T,TUCAKOV V.Distance-based outliers:algorithms and applications[J].The VLDB Journal,2000,8(3/4):237-253. [20] GHOTING A,PARTHASARATHY S,OTEY M E.Fast mining of distance-based outliers in high-dimensional datasets[J].Data Mining and Knowledge Discovery,2008,16(3):349-364. [21] ANGIULLI F,BASTA S,PIZZUTI C.Distance-based detection and prediction ofoutliers[J].IEEE Transactions on Knowledge Data Engineering,2006,18(2):145-160. [22] ZHANG K,HUTTER M,JIN H.A new local distance-based outlier detection approach for scattered real-world data[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery Data Mining,2009:813-822. [23] 张戈,盖赟.局部离群因子算法(LOF)在异常检测中的应用研究[J].网络安全技术与应用,2020(11):49-50. ZHANG G,GAI Y.Research on the application of local outlier factor algorithm(LOF) in anomaly detection[J].Network Security Technology and Application,2020(11):49-50. [24] 程张玉.融合iForest和LOF的大规模多维数据离群点检测方法研究[D].武汉:武汉理工大学,2020. CHENG Z Y.Research on iForest and LOF based outlier detection method for large-scale multidimensional data[D].Wuhan:Wuhan University of Technology,2020. [25] LIU J,DENG H.Outlier detection on uncertain data based on local information[J].Knowledge Based Systems,2013,51:60-71. [26] 张倩倩,于炯,李梓杨,等.基于近邻传播的离群点检测算法[J].计算机应用研究,2021,38(6):1662-1667. ZHANG Q Q,YU J,LI Z Y,et al.Outlier detection algorithm based on affinity propagation[J].Application Research of Computers,2021,38(6):1662-1667. [27] ANGIULLI F,BASTA S,PIZZUTI C.Distance-based detection and prediction of outliers[J].IEEE Transactions on Knowledge & Data Engineering,2005,18(2):145-160. [28] KRIEGEL H P,SCHUBERT M,ZIMEK A.Angle-based outlier detection in high-dimensional data[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2008:444-452. [29] RADOVANOVI? M,NANOPOULOS A,IVANOVI? M.Reverse nearest neighbors in unsupervised distance-based outlier detection[J].IEEE Transactions on Knowledge Data Engineering,2015,27(5):1369-1382. [30] HUANG J,ZHU Q,YANG L,et al.A non-parameter outlier detection algorithm based on natural neighbor[J].Knowledge Based Systems,2016,92:71-77. [31] HA J,SEOK S,LEE J S.A preciseranking method for outlier detection[J].Information Sciences:An International Journal,2015,324:88-107. [32] TANG B,HE H.A local density-based approach for outlier detection[J].Neurocomputing,2017,241:171-180. [33] 杨晓玲,冯山,袁钟.基于相对距离的反[k]近邻树离群点检测[J].电子学报,2020,48(5):937-945. YANG X L,FENG S,YUAN Z.Outlier detection based on reversed [k]-nearest neighborhood MST of relative distance measure[J].Acta Electronica Sinica,2020,48(5):937-945. [34] HUANG H,MEHROTRA K,MOHAN C K.Rank-based outlier detection[J].Journal of Statistical Computation Simulation,2013,83(3):518-531. [35] KRIEGEL H P,KR?GER P,SCHUBERT E,et al.Outlier detection in axis-parallel subspaces of high dimensional data[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery Data Mining.Berlin,Germany:Springer,2009:831-838. [36] BHATTACHARYA G,GHOSH K,CHOWDHURY A S.Outlier detection using neighborhood rank difference[J].Pattern Recognition Letters,2015,60:24-31. [37] WANG X,WANG X L,MA Y,et al.A fast MST-inspired kNN-based outlier detection method[J].Information Systems,2015,48:89-112. [38] PANG G,CAO L,CHEN L,et al.Learning representations of ultrahigh-dimensional data for random distance-based outlier detection[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2018:2041-2050. [39] 姜高霞,樊瑞宣,王文剑.近邻感知的标签噪声过滤算法[J].模式识别与人工智能,2020,33(6):518-529. JIANG G X,FAN R X,WANG W J.Label noise filtering via perception of nearest neighbors[J].Pattern Recognition and Artificial Intelligence,2020,33(6):518-529. [40] BAY S,SCHWABACHER M.Mining distance-based outliers in near linear time with randomization and a simple pruningrule[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery Data Mining,Aug 2003:29-38. [41] ANGIULLI F,FASSETTI F.Very efficient mining of distance-based outliers[C]//Proceedings of 16th ACM Conference on Information Knowledge Management,Nov 2007:791-800. [42] REN D,RAHAL I,PERRIZO W,et al.A vertical distance-based outlier detectionmethod with local pruning[C]//Proceedings of 13th ACM CIKM International Conference on Information Knowledge Management,Nov 2004:279-284. [43] VU N H,GOPALKRISHNAN V.Efficient pruning schemes for distance-based outlier detection[C]//Proceedings of European Conference on Machine Learning Knowledge Discovery Databases,2009:160-175. [44] SHUKLA M,KOSTA Y P,CHAUHAN P.Analysis and evaluation of outlier detection algorithms in data streams[C]//Proceedings of IEEE International Conference on Computer,Communication and Control(IC4),Sep 2015:1-8. [45] ANGIULLI F,FASSETTI F.Distance-based outlier queries in data streams:the novelt-ask and algorithms[J].Data Mining Knowledge Discovery,2010,20:290-324. [46] AGGARWAL C C.On abnormality detection in spurious populated data streams[C]//Proceedings of SIAM International Conference on Data Mining,Apr 2005:80-91. [47] SUBRAMANIAM S,PALPANAS T,PAPADOPOULOS D,et al.Online outlier detection in sensor data using nonparametric models[C]//Proceedings of International Conference on Very Large Data Bases,Sep 2006:187-198. [48] YANG D,RUNDENSTEINER E A,WARD M.Neighbor-based pattern detection for windows over streaming data[C]//Proceedings of 12th International Conference on Extending Database Technology,Mar 2009:529-540. [49] ZHANG J.Advancement of outlier detection:a survey[J].ICST Transactions on Scalable Information Systems,2013,13:1-26. [50] KONTAKI M,GOUNARIS A,PAPADOPOULOS A N,et al.Continuous monitoring of distance-based outliers over data streams[C]//Proceedings of IEEE 27th International Conference on Data Engineering,Apr 2011:135-146. [51] ANGIULLI F,FASSETTI F.Detecting distance-based outliers in streams of data[C]//Proceedings of 16th ACM Conference on Information Knowledge Management,Nov 2007:811-820. [52] CAO L,YANG D,WANG Q,et al.Scalable distance-based outlier detection over high-volume data streams[C]//Proceedings of IEEE 30th International Conference on Data Engineering,Apr 2014:76-87. [53] 江峰,杜军威,眭跃飞,等.基于边界和距离的离群点检测[J].电子学报,2010,38(3):700-705. JIANG F,DU J W,SUI Y F,et al.Outlier detection based on boundary and distance[J].Acta Electronica Sinica,2010,38(3):700-705. [54] JIANG F,SUI Y F,CAO C G.Outlier detection using rough set theory[C]//Proceedings of the 10th International Conference on Rough Sets Fuzzy Sets Data Mining and Granular Computing.Canada:Springer-Verlag,2005:79-87. [55] 袁钟,冯山.基于邻域值差异度量的离群点检测算法[J].计算机应用,2018,38(7):1905-1909. YUAN Z,FENG S.Outlier detection algorithm based on neighborhood value difference metric[J].Journal of Computer Applications,2018,38(7):1905-1909. [56] AGGARWAL C C,YU P S.Outlier detection for high dimensional data[J].ACM SIGMOD Record,2001,30(2):37-46. [57] BHADURI K,MATHEWS B L,GIANNELLA C R.Algorithms for speeding up distance-based outlier detection[C]//Proceedings of ACM KDD Conference,Aug 2011:859-867. [58] TRAN L,FAN L,SHAHABI C.Distance-based outlier detection in data streams[J].Proceedings of VLDB Endowment(PVLDB),2016,9(12):1089-1100. [59] BREUNIG M,KRIEGEL H,NG R T,et al.LOF:Identifying density-based local outliers[J].ACM SIGMOD Record,2000,29(2):93-104. [60] SCHUBERT E,ZIMEK A,KRIEGEL H P.Local outlier detection reconsidered:a generalized view on locality with applications to spatial,video,and network outlier detection[J].Data Mining Knowledge Discovery,2014,28(1):190-237. [61] TANG J,CHEN Z,FU A,et al.Enhancing effectiveness of outlier detections for low density patterns[C]//Advances in Knowledge Discovery and Data Mining.Berlin,Germany:Springer,2002:535-548. [62] KRIEGEL H,KR?GER P,SCHUBERT E,et al.LoOP:local outlier probabilities[C]//Proceedings of 18th ACM Conference on Information Knowledge Management,2009:1649-1652. [63] 李长镜,赵书良,池云仙.一种基于谱嵌入和局部密度的离群点检测算法[J].计算机科学,2019,46(3):260-266. LI C J,ZHAO S L,CHI Y X.Outlier detection algorithm based on spectral embedding and local density[J].Computer Science,2019,46(3):260-266. [64] MOMTAZ R,MOHSSEN N,GOWAYYED M A.DWOF:a robust density-based outlier detection approach[C]//Proceedings of Iberian Conference on Pattern Recognition Image Analysis,2013:517-525. [65] FAN H,ZA?ANE O R,FOSS A,et al.Resolution-based outlier factor:detecting the top-n most outlying data points in engineering data[J].Knowledge Information Systems,2009,19(1):31-51. [66] PAPADIMITRIOU S,KITAGAWA H,GIBBONS P B,et al.LOCI:fast outlier detection using the local correlation integral[C]//Proceedings of 19th International Conference on Data Engineering,Mar 2003:315-326. [67] REN D,WANG B,PERRIZO W.RDF:a density-based outlier detection method using vertical data representation[C]//Proceedings of International Conference on Data Mining,Nov 2004:503-506. [68] 洪沙,林佳丽,张月良.基于密度的不确定数据离群点检测研究[J].计算机科学,2015,42(5):230-233. HONG S,LIN J L,ZHANG Y L.Density-based outlier detection on uncertain data[J].Computer Science,2015,42(5):230-233. [69] JIN W,TUNG A K,HAN J,et al.Ranking outliers using symmetric neighborhood relationship[C]//Proceedings of 10th Pacific-Asia Conference on Advance Knowledge Discovery Data Mining,2006:577-593. [70] CAO K,SHI L,WANG G,et al.Density-based local outlier detection on uncertain data[C]//International Conference on Web-Age Information Management,2014. [71] 邹云峰,张昕,宋世渊,等.基于局部密度的快速离群点检测算法[J].计算机应用,2017,37(10):2932-2937. ZOU Y F,ZHANG X,SONG S Y,et al.Fast outlier detection algorithm based on local density[J].Journal of Computer Applications,2017,37(10):2932-2937. [72] KELLER F,MüLLER E,BOHM K.HiCS:high contrast subspaces for density-based outlier ranking[C]//Proceedings of IEEE 28th International Conference on Data Engineering(ICDE),Apr 2012:1037-1048. [73] BANDARAGODA T.Efficient anomaly detection by isolation using nearest neighbour ensemble[C]//Proceedings of the 2014 IEEE International Conference on Data Mining Workshop,2014:698-705. [74] PANG G S,KAI M T,ALBRECHT D.LeSiNN:detecting anomalies by identifying least similar nearest neighbours[C]//Proceedings of the 2015 IEEE International Conference on Data Mining Workshop(ICDMW’15),2015:623-630. [75] CAMPELLO R J G B,MOULAVI D,ZIMEK A,et al.Hierarchical density estimates for data clustering,visualization,and outlier detection[J].ACM Transactions on Knowledge Discovery Data(TKDD),2015,10(1). [76] WU K,ZHANG K,FAN W,et al.RS-forest:a rapid density estimator for streaming anomaly detection[C]//Proceedings of IEEE International Conference on Data Mining,Dec 2014:600-609. [77] BAI M,WANG X,XIN J,et al.An efficient algorithm for distributed density-based outlier detection on big data[J].Neurocomputing,2016,181:19-28. [78] LOZANO E,ACUFIA E.Parallel algorithms for distance-based anddensity-based outliers[C]//Proceedings of 5th IEEE International Conference on Data Mining,Nov 2005:729-732. [79] 黄添强,李凯,郭躬德.基于局部相关维度的流形离群点检测算法[J].模式识别与人工智能,2011,24(5):629-636. HUANG T Q,LI K,GUO G D.Manifold outlier detection algorithm based on local-correlation dimension[J].Pattern Recognition and Artificial Intelligence,2011,24(5):629-636. [80] NA G S,KIM D,YU H.Dilof:effective and memory efficient local outlier detection in data streams[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2018:1993-2002. [81] QIN X,RUNDENSTEINER E.Scalable kernel density estimation-based local outlier detection over large data streams[C]//Proceedings of the 22nd International Conference on Extending Database Technology(EDBT),2019. [82] 毛亚琼,田立勤,王艳,等.引入局部向量点积密度的数据流离群点快速检测算法[J].计算机工程,2020,46(11):132-138. MAO Y Q,TIAN L Q,WANG Y,et al.Fast outlier detection algorithm in data stream with local density of vector dot product[J].Computer Engineering,2020,46(11):132-138. [83] VáZQUEZ F I,ZSEBY T,ZIMEK A.Outlier detection based on low density models[C]//Proceedings of ICDM Workshops,2018:970-979. [84] NING J,CHEN L,CHEN J.Relative density-based outlier detection algorithm[C]//Proceedings of CSAI/ICIMT,Dec 2018:227-231. [85] SU S,XIAO L,RUAN L,et al.An efficient density-based local outlier detection approach for scattered data[J].IEEE Access,2019,7:1006-1020. [86] 金利娜,于炯,杜旭升,等.基于生成对抗网络和变分自编码器的离群点检测算法[J].计算机应用研究,2022,39(3):774-779. JIN L N,YU J,DU X S,et al.Generative adversarial network and variational auto-encoder based outlier detection[J].Application Research of Computers,2022,39(3):774-779. [87] 王晓辉,宋学坤,王晓川.基于邻域密度的异构数据局部离群点挖掘算法[J].计算机仿真,2021,38(7):281-285. WANG X H,SONG X K,WANG X C.Local outlier mining algorithmfor heterogeneous data based on neigh-borhood density[J].Computer Simulation,2021,38(7):281-285. [88] 杜旭升,于炯,陈嘉颖,等.一种基于邻域系统密度差异度量的离群点检测算法[J].计算机应用研究,2020,37(7):1969-1973. DU X S,YU J,CHEN J Y,et al.Outlier detection algorithm based on neighborhood system density difference measurement[J].Application Research of Computer,2020,37(7):1969-1973. [89] 王敬华,金鹏.基于粗约简和网格的离群点检测[J].计算机工程与应用,2015,51(3):133-137. WANG J H,JIN P.Outlier detection based on rough reduction and grid[J].Computer Engineering and Applications,2015,51(3):133-137. [90] 邓廷权,刘金艳,王宁.高维数据离群点检测的局部线性嵌入方法[J].计算机工程与应用,2018,54(6):115-122. DENG T Q,LIU J Y,WANG N.Locally linear embedding method for high dimensional data outlier detection[J].Computer Engineering and Applications,2018,54(6):115-122. [91] BARNETT V,LEWIS T.Outliers in statistical data[M].Hoboken,NJ,USA:Wiley,1994. [92] WANG W,YANG J,MUNTZ R.STING:a statistical information grid approach to spatial data mining[C]//Proceedings of 23rd VLDB Conference,Aug 1997:186-195. [93] 林雪.海量不确定数据集中离群点快速检测方法仿真[J].计算机仿真,2021,38(6):378-382. LIN X.Simulation of quick detection method for outliers in massive uncertain data sets[J].Computer Simulation,2021,38(6):378-382. [94] HIDO S,TSUBOI Y,KASHIMA H,et al.Statistical outlier detection using direct density ratioestimation[J].Knowledge Infarmation Systems,2011,26(2):309-336. |
[1] | 吕奕, 刘漫丹. 基于改进密度峰值聚类算法的轨迹行为分析[J]. 计算机工程与应用, 2022, 58(17): 314-324. |
[2] | 席婷婷, 赵旭俊, 苏建花. 基于马尔科夫随机游走的两阶段离群检测算法[J]. 计算机工程与应用, 2022, 58(1): 89-98. |
[3] | 周玉,朱文豪,房倩,白磊. 基于聚类的离群点检测方法研究综述[J]. 计算机工程与应用, 2021, 57(12): 37-45. |
[4] | 贺寰烨,林果园,顾浩,方梦华. 云虚拟机异常检测场景下改进的LOF算法[J]. 计算机工程与应用, 2020, 56(23): 80-86. |
[5] | 钟毓灵,王习特,白梅,朱斌,李冠宇. FODU:不确定数据集中快速离群点检测方法[J]. 计算机工程与应用, 2019, 55(19): 105-114. |
[6] | 陈飞宇1,阮 鲲2,胡友彬1,曹 磊3. 基于KPCA光谱特征约束的水边线提取算法[J]. 计算机工程与应用, 2018, 54(11): 171-177. |
[7] | 韩 崇1,袁颖珊2,梅 焘2,耿慧玲2. 基于K-means的数据流离群点检测算法[J]. 计算机工程与应用, 2017, 53(3): 58-63. |
[8] | 王兆丰,单甘霖. 一种基于k-均值的DBSCAN算法参数动态选择方法[J]. 计算机工程与应用, 2017, 53(3): 80-86. |
[9] | 盛权为1,汪一百1,高 阳2. 一种改进的异构链路协同预测算法研究[J]. 计算机工程与应用, 2017, 53(15): 155-163. |
[10] | 陈雷雷,葛洪伟,杨金龙,袁运浩. 基于流形结构的多聚类中心近邻传播聚类算法[J]. 计算机工程与应用, 2016, 52(6): 67-73. |
[11] | 李宗林,罗 可. DBSCAN算法中参数的自适应确定[J]. 计算机工程与应用, 2016, 52(3): 70-73. |
[12] | 何云斌1,刘雪娇1,王知强2,万 静1,李 松1. 基于全局中心的高密度不唯一的K-means算法研究[J]. 计算机工程与应用, 2016, 52(1): 48-54. |
[13] | 王敬华,金 鹏. 基于粗约简和网格的离群点检测[J]. 计算机工程与应用, 2015, 51(3): 133-137. |
[14] | 许洪玮,曹江中,何家峰,戴青云. 基于密度与路径的稳健谱聚类[J]. 计算机工程与应用, 2015, 51(2): 165-170. |
[15] | 熊拥军,刘卫国,欧鹏杰. 模糊C-均值聚类算法的优化[J]. 计算机工程与应用, 2015, 51(11): 124-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||