计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (18): 278-284.DOI: 10.3778/j.issn.1002-8331.2206-0101
李林源,徐金甫,严迎建,赵聪慧,刘燕江
LI Linyuan, XU Jinfu, YAN Yingjian, ZHAO Conghui, LIU Yanjiang
摘要: 硬件木马已成为集成电路的主要安全威胁之一,然而现有的安全性分析方法从单一角度描述硬件木马特征,硬件木马的覆盖率低,难以应用到实际的检测中。分析了硬件木马的重要属性和典型结构,提出了13维硬件木马特征向量,可以覆盖目前所有已知类型的硬件木马;利用SMOTETomek算法对特征集进行扩展,消除训练数据集的不平衡性;使用随机森林算法评估13维特征的重要性,依据特征重要性排序和模型评分,优化木马特征集合;基于最优特征向量训练分类器,识别门级网表中的木马信号。基于Trust_Hub硬件木马库中的21个基准电路展开实验验证,木马检出率高达99.22%,误判率仅为0.01%。与现有文献相比,检测效果有了大幅提升。