计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (18): 154-162.DOI: 10.3778/j.issn.1002-8331.2205-0212
张威,赵世灵,刘银豪,王鸿奎,殷海兵
ZHANG Wei, ZHAO Shiling, LIU Yinhao, WANG Hongkui, YIN Haibing
摘要: 视频质量得分是观测者在多个时间尺度下对视频进行感知的结果,而当前质量评价模型普遍在某个固定尺度下对失真进行描述,单一粒度的特征对全局信息表征并不充足。为充分提取并聚合多粒度信息来刻画人类复杂的感知机制,提出一种基于多尺度时空特征聚合的全参考视频质量评价方法。为解决传统质量评价算法中固定间隔采样丢失关键帧的痛点,通过结合图像结构失真度与感知运动能量对序列自适应采样;为提取不同粒度特征对失真进行表征,并探究聚合多粒度特征的有效方式,利用堆叠的长短时记忆层对序列进行特征提取,模拟视觉神经的正反向感知迭代机制,对网络层特征融合;结合多通道自注意力网络回归预测得分。模型在多个数据集中的SRCC指标均达到0.93以上,取得最优或次优的性能。