计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (15): 68-77.DOI: 10.3778/j.issn.1002-8331.2203-0310
茅智慧,朱佳利,吴鑫,李君
出版日期:
2022-08-01
发布日期:
2022-08-01
MAO Zhihui, ZHU Jiali, WU Xin, LI Jun
Online:
2022-08-01
Published:
2022-08-01
摘要: 自动驾驶是人工智能发展领域的一个重要方向,拥有良好的发展前景,而实时准确的目标检测与识别是保证自动驾驶汽车安全稳定运行的基础与关键。回顾自动驾驶和目标检测技术的发展历程,综述了YOLO算法在车辆、行人、交通标志、灯光、车道线等目标检测上的应用,同时对比分析了精确性与实时性等性能,阐述了自动驾驶目标检测研究领域将要面临的挑战、可能的解决方案和潜在的发展方向。
茅智慧, 朱佳利, 吴鑫, 李君. 基于YOLO的自动驾驶目标检测研究综述[J]. 计算机工程与应用, 2022, 58(15): 68-77.
MAO Zhihui, ZHU Jiali, WU Xin, LI Jun. Review of YOLO Based Target Detection for Autonomous Driving[J]. Computer Engineering and Applications, 2022, 58(15): 68-77.
[1] 中华人民共和国公安部.2021年全国机动车保有量达3.95亿,新能源汽车同比增59.25%[EB/OL].(2022-01-11)[2022-02-28].https://app.mps.gov.cn/gdnps/pc/content.jsp?id=8322369&mtype. Ministry of Public Security of the People’s Republic of China.In 2021,the number of motor vehicles nationwide will reach 395 million,and the number of new energy vehicles will increase by 59.25% year-on-year[EB/OL].(2022-01-11)[2022-02-28].https://app.mps.gov.cn/gdnps/pc/content.jsp?id=8322369&mtype. [2] SINGH S.Critical reasons for crashes investigated in the national motor vehicle crash causation survey[R].National Center for Statistics and Analysis,2015. [3] LUETTEL T,HIMMELSBACH M,WUENSCHE H J.Autonomous ground vehicles—concepts and a path to the future[J].Proceedings of the IEEE,2012,100:1831-1839. [4] 邓伟文,李江坤,任秉韬,等.面向自动驾驶的仿真场景自动生成方法综述[J].中国公路学报,2022,35(1):316-333. DENG W W,LI J K,REN B T,et al.A survey on automatic simulation scenario generation methods for autonomous driving[J].China Journal of Highway and Transport,2022,35(1):316-333. [5] 吕品,许嘉,李陶深,等.面向自动驾驶的边缘计算技术研究综述[J].通信学报,2021,42(3):190-208. LYU P,XU J,LI T S,et al.Survey on edge computing technology for autonomous driving[J].Journal on Communication,2021,42(3):190-208. [6] ZAMANAKOS G,TSOCHATZIDIS L,AMANATIADIS A,et al.A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving[J].Computers & Graphics,2021,99:153-181. [7] 申泽邦,雍宾宾,周庆国,等.无人驾驶原理与实践[M].北京:机械工业出版社,2019. SHEN Z B,YONG B B,ZHOU Q G,et al.The principle and practice of unmanned driving[M].Beijing:Machinery Industry Press,2019. [8] 全国汽车标准化技术委员会.汽车驾驶自动化分级:GB/T 40429—2021[EB/OL].(2021-09-11)[2021-12-05].http://www.catarc.org.cn/xinwen/show-3334.html. National Automotive Standardization Technical Committee.Automotive driving automation classification:GB/T 40429—2021[EB/OL].(2021-09-11)[2021-12-05].http://www.catarc.org.cn/xinwen/show-3334.html. [9] THORPE C,HERBERT M,KANADE T,et al.Toward autonomous driving:the CMU Navlab.II.architecture and systems[J].IEEE Expert,1991,6(4):44-52. [10] DICKMANNS E D,ZAPP A.Autonomous high speed road vehicle guidance by computer vision[J].IFAC Proceedings Volumes,1987,20(5):221-226. [11] 穆康乐.无人驾驶汽车发展现状及未来展望[J].电子技术与软件工程,2017(21):112-114. MU K L.Development status and future prospects of autonomous vehicles[J].Electronic Technology and Software Engineering,2017(21):112-114. [12] BUEHLER M,IAGNEMMA K,SINGH S.The DARPA urban challenge:autonomous vehicles in city traffic[M].[S.l.]:Springer,2009. [13] THRUN S,MONTEMERLO M,DAHLKAMP H,et al.Stanley:the robot that won the DARPA grand challenge[J].Journal of Field Robotics,2006,23(9):661-692. [14] CHEN S K,PARIKH J S.Developing a forward collision warning system simulation[C]//Proceedings of the IEEE Intelligent Vehicles Symposium 2000,Dearborn,MI,USA,5-5 Oct 2000:338-343. [15] 盖世汽车研究院.【自动驾驶】高级驾驶辅助系统(ADAS)产业报告(2021版)[EB/OL].(2021-08-13)[2021-12-13].https://auto.gasgoo.com/institute/2240.html. Gasgoo Research Institute.[Autonomous Driving] Advanced Driver Assistance System(ADAS) industry report(2021 Edition) [EB/OL].(2021-08-13)[2021-12-13].https://auto.gasgoo.com/institute/2240.html. [16] LE-ANH T,DE KOSTER M B M.A review of design and control of automated guided vehicle systems[J].European Journal of Operational Research,2006,171(1):1-23. [17] PADEN B,?áP M,YONG S Z,et al.A survey of motion planning and control techniques for self-driving urban vehicles[J].IEEE Transactions on Intelligent Vehicles,2016,1(1):33-55. [18] KUDERER M,GULATI S,BURGARD W.Learning driving styles for autonomous vehicles from demonstration[C]//2015 IEEE International Conference on Robotics and Automation(ICRA),Seattle,WA,USA,26-30 May 2015:2641-2646. [19] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105. [20] SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[J].Advances in Neural Information Processing Systems,2014,27. [21] SCHWARTING W,ALONSO-MORA J,RUS D.Planning and decision-making for autonomous vehicles[J].Annual Review of Control,Robotics,and Autonomous Systems,2018,1:187-210. [22] VAN BRUMMELEN J,O’BRIEN M,GRUYER D,et al.Autonomous vehicle perception:the technology of today and tomorrow[J].Transportation Research Part C:Emerging Technologies,2018,89:384-406. [23] KUUTTI S,FALLAH S,KATSAROS K,et al.A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications[J].IEEE Internet of Things Journal,2018,5(2):829-846. [24] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [25] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [26] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448. [27] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,28:91-99. [28] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[J].Advances in Neural Information Processing Systems,2016,29:379-387. [29] GHIASI G,LIN T Y,LE Q V.Nas-FPN:learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7036-7045. [30] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [31] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [32] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271. [33] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [34] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [35] ZHANG J,HUANG M,JIN X,et al.A real-time Chinese traffic sign detection algorithm based on modified YOLOv2[J].Algorithms,2017,10(4):127. [36] YANG W,ZHANG W.Real-time traffic signs detection based on YOLO network model[C]//2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery(CyberC),Chongqing,China,29-30 Oct 2020:354-357. [37] DEWI C,CHEN R C,LIU Y T,et al.Yolo V4 for advanced traffic sign recognition with synthetic training data generated by various GAN[J].IEEE Access,2021,9:97228-97242. [38] MOHD-ISA W N,ABDULLAH M S,SARZIL M,et al.Detection of Malaysian traffic signs via modified YOLOv3 algorithm[C]//2020 International Conference on Data Analytics for Business and Industry:Way Towards a Sustainable Economy(ICDABI),Sakheer,Bahrain 26-27 Oct 2020:1-5. [39] MANGSHOR N N A,PAUDZI N P A M,IBRAHIM S,et al.A real-time malaysian traffic sign recognition using YOLO algorithm[C]//Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020.Singapore:Springer,2022:283-293. [40] 吕禾丰,陆华才.基于YOLOv5算法的交通标志识别技术研究[J].电子测量与仪器学报,2021,35(10):137-144. LV H F,LU H C.Research on traffic sign recognition technology based on YOLOv5 algorithm[J].Journal of Electronic Measurement and Instrumentation,2021,35(10):137-144. [41] JENSEN M B,NASROLLAHI K,MOESLUND T B.Evaluating state-of-the-art object detector on challenging traffic light data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017:9-15. [42] POSSATTI L C,GUIDOLINI R,CARDOSO V B,et al.Traffic light recognition using deep learning and prior maps for autonomous cars[C]//2019 International Joint Conference on Neural Networks(IJCNN),Budapest,Hungary,14-19 July 2019:1-8. [43] GAO H,WANG W,YANG C,et al.Traffic signal image detection technology based on YOLO[C]//Journal of Physics:Conference Series,Guangzhou,China,2021. [44] KIM J,CHO H,HWANGBO M,et al.Deep traffic light detection for self-driving cars from a large-scale dataset[C]//2018 21st International Conference on Intelligent Transportation Systems(ITSC),Maui,HI,USA,4-7 Nov 2018:280-285. [45] 叶佳林,苏子毅,马浩炎,等.改进YOLOv3的非机动车检测与识别方法[J].计算机工程与应用,2021,57(1):194-199. YE J L,SU Z Y,MA H Y,et al.Improved YOLOv3 non-motor vehicles detection and recognition method[J].Computer Engineering and Applications,2021,57(1):194-199. [46] ZHOU T,JIANG K,XIAO Z,et al.Object detection using multi-sensor fusion based on deep learning[C]//19th COTA International Conference of Transportation Professionals,2019:5770-5782. [47] 张成标,童宝宏,程进,等.改进的Yolo_v2违章车辆检测方法[J].计算机工程与应用,2020,56(20):104-110. ZHANG C B,TONG B H,CHENG J,et al.Improved Yolo_v2 illegal vehicle detection method[J].Computer Engineering and Applications,2020,56(20):104-110. [48] CHEN S,LIN W.Embedded system real-time vehicle detection based on improved YOLO network[C]//2019 IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),Chongqing,China,11-13 Oct 2019:1400-1403. [49] WU T H,WANG T W,LIU Y Q.Real-time vehicle and distance detection based on improved yolo v5 network[C]//2021 3rd World Symposium on Artificial Intelligence(WSAI),Guangzhou,China,18-20 June 2021:24-28. [50] LAN W,DANG J,WANG Y,et al.Pedestrian detection based on YOLO network model[C]//2018 IEEE International Conference on Mechatronics and Automation(ICMA),Changchun,China,2018:1547-1551. [51] 高宗,李少波,陈济楠,等.基于YOLO网络的行人检测方法[J].计算机工程,2018,44(5):215-219. GAO Z,LI S B,CHEN J N,et al.Pedestrian detection method based on YOLO network[J].Computer Engineering,2018,44(5):215-219. [52] 郝旭政,柴争义.一种改进的深度残差网络行人检测方法[J].计算机应用研究,2019,36(5):1569-1572. HAO X Z,CHAI Z Y.Improved pedestrian detection method based on depth residual network[J].Application Research of Computers,2019,36(5):1569-1572. [53] ZHANG C,LUO K,GU S,et al.Caps-YOLO:pedestrian detection method of complex posture combined with capsules network[J].Journal of Flow Visualization and Image Processing,2021,28(3):41-69. [54] LIU S,GENG Y,SONG Y,et al.Research on small target pedestrian detection algorithm based on improved YOLOv3[C]//International Conference on Genetic and Evolutionary Computing.Singapore:Springer,2021:203-214. [55] ZHANG Y,SHEN Y L,ZHANG J.An improved tiny-yolov3 pedestrian detection algorithm[J].Optik,2019,183:17-23 [56] ZHANG X,YANG W,TANG X,et al.A fast learning method for accurate and robust lane detection using two-stage feature extraction with YOLO v3[J].Sensors,2018,18(12):4308. [57] 崔文靓,王玉静,康守强,等.基于改进YOLOv3算法的公路车道线检测方法[J].自动化学报,2022,48(6):1560-1568. CUI W L,WANG Y J,KANG S Q,et al.Road lane line detection method based on improved YOLOv3 algorithm[J].Acta Automatica Sinica,2022,48(6):1560-1568. [58] JI G,ZHENG Y.Lane line detection system based on Improved YoloV3 algorithm[EB/OL].(2021-10-13)[2022-02-28].https://doi.org/10.21203/rs.3.rs-961172/v1. [59] 张翔,唐小林,黄岩军.道路结构特征下的车道线智能检测[J].中国图象图形学报,2021,26(1):123-134. ZHANG X,TANG X L,HUANG Y J.Intelligent detection of lane based on road structure characteristics[J].Journal of Image and Graphics,2021,26(1):123-134. [60] DENG T,WU Y.Simultaneous vehicle and lane detection via MobileNetV3 in car following scene[J].Plos One,2022,17(3):e0264551. |
[1] | 杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2022, 58(9): 201-207. |
[2] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[3] | 王浩, 雷印杰, 陈浩楠. 改进YOLOV3实时交通标志检测算法[J]. 计算机工程与应用, 2022, 58(8): 243-248. |
[4] | 赵杰伦, 张兴忠, 董红月. 基于尺度不变特征金字塔的输电线路缺陷检测[J]. 计算机工程与应用, 2022, 58(8): 289-296. |
[5] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[6] | 周天宇, 朱启兵, 黄敏, 徐晓祥. 基于轻量级卷积神经网络的载波芯片缺陷检测[J]. 计算机工程与应用, 2022, 58(7): 213-219. |
[7] | 杨佳云, 么一诺, 于鲲, 柳秀梅, 于明鹤, 赵志滨. 目标检测中语义约束检查算法的研究与实现[J]. 计算机工程与应用, 2022, 58(7): 237-242. |
[8] | 王鑫鹏, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57. |
[9] | 李彦辰, 张小俊, 张明路, 沈亮屹. 基于改进Efficientdet的自动驾驶场景目标检测[J]. 计算机工程与应用, 2022, 58(6): 183-191. |
[10] | 郭宇阳, 胡伟超, 戴帅, 陈艳艳. 面向路侧交通监控场景的轻量车辆检测模型[J]. 计算机工程与应用, 2022, 58(6): 192-199. |
[11] | 张振伟, 郝建国, 黄健, 潘崇煜. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022, 58(5): 1-11. |
[12] | 贺宇哲, 何宁, 张人, 梁煜博, 刘晓晓. 面向深度学习目标检测模型训练不平衡研究[J]. 计算机工程与应用, 2022, 58(5): 172-178. |
[13] | 刘佳, 卞方舟, 陈大鹏, 李为斌. 基于UGF-Net的指尖检测模型[J]. 计算机工程与应用, 2022, 58(5): 225-231. |
[14] | 张馨月, 降爱莲. 融合特征增强和自注意力的SSD小目标检测算法[J]. 计算机工程与应用, 2022, 58(5): 247-255. |
[15] | 黄国新, 李炜, 张比浩, 梁斌斌, 韩笑冬, 宫江雷, 武长青. 改进SSD的机场场面多尺度目标检测算法[J]. 计算机工程与应用, 2022, 58(5): 264-270. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||