计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (17): 23-33.DOI: 10.3778/j.issn.1002-8331.2201-0384
冯钧,李艳,杭婷婷
出版日期:
2022-09-01
发布日期:
2022-09-01
FENG Jun, LI Yan, HANG Tingting
Online:
2022-09-01
Published:
2022-09-01
摘要: 问答系统可以针对用户提出的自然语言问题给出精准的答案,是自然语言处理领域中一个重要的研究方向。对于具有复杂语义结构和句法结构的多跳问题,模型需要强大的自然语言理解能力。问题分解作为问题理解的一种技术,有着不可估量的作用。阐述了问题分解的研究背景与意义;根据问题特征提取的方式,将现有的方法分为传统机器学习方法和深度学习方法两大类,传统机器学习方法以规则模板匹配和基于分割的方法为主,深度学习方法以基于Transformer、图神经网络、注意力机制、查询图和强化学习为主,并分别从模型架构、优势、劣势等方面进行分析。结合目前研究的动态,初步展望了未来的研究方向。
冯钧, 李艳, 杭婷婷. 问答系统中复杂问题分解方法研究综述[J]. 计算机工程与应用, 2022, 58(17): 23-33.
FENG Jun, LI Yan, HANG Tingting. Survey on Question Decomposition Method in Question Answering System[J]. Computer Engineering and Applications, 2022, 58(17): 23-33.
[1] 邱楠,王昊奋,邵浩.从聊天机器人到虚拟生命-人工智能技术的新机遇[J].中国人工智能学会通讯,2017,11(7):32-40. QIU N,WANG H F,SHAO H.From chatbots to virtual life-new opportunities for artificial intelligence technology[J].Communications of the CAAI,2017,11(7):32-40. [2] 赵芸,刘德喜,万常选,等.检索式自动问答研究综述[J].计算机学报,2021,44(6):1214-1232. ZHAO Y,LIU D X,WAN C X,et al.Retrieval-based automatic question answer:a literature survey[J].Chinese Journal of Computers,2021,44(6):1214-1232. [3] 李武波,张蕾,舒鑫.基于Seq2Seq的生成式自动问答系统应用与研究[J].现代计算机(专业版),2017(36):57-60. LI W B,ZHANG L,SHU X.Application and research on generative automatic question answering system based on Seq2Seq[J].Modern Computer,2017(36):57-60. [4] 仇瑜,程力,DANIYAL A.特定领域问答系统中基于语义检索的非事实型问题研究[J].北京大学学报(自然科学版),2019,55(1):55-64. QIU Y,CHENG L,DANIYAL A.Semantic search on non-factoid questions for domain-specific question answering systems[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(1):55-64. [5] SURDEANU M,CIARAMITA M,ZARAGOZA H.Learning to rank answers to non-factoid questions from web collections[J].Computational Linguistics,2011,37(2):351-383. [6] YANG L,AI Q Y,SPINA D,et al.Beyond factoid QA:effective methods for non-factoid answer sentence retrieval[C]//European Conference on IR Research,2016:115-128. [7] FERRUCCI D,BROWN E,CHU-CARROLL J,et al.Building watson:an overview of the DeepQA project[J].AI Magazine,2010,31(3):69-79. [8] 杜会芳,王昊奋,史英慧,等.知识图谱多跳问答推理研究进展、挑战与展望[J].大数据,2021,7(3):60-79. DU H F,WANG H F,SHI Y H,et al.Progress,challenges and research trends of reasoning in multi-hop knowledge graph based question answering[J].Big Data Research,2021,7(3):60-79. [9] MOSCHITTI A,QUARTERONI S,BASILI R,et al.Exploiting syntactic and shallow semantic kernels for question answer classification[C]//Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics,2007:776. [10] DUAN H Z,CAO Y B,LIN C Y,et al.Searching questions by identifying question topic and question focus[C]//Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics,2008:156-164. [11] CARPINETO C,ROMANO G.A survey of automatic query expansion in information retrieval[J].ACM Computing Surveys,2012,44(1):1-50. [12] ZAHNG W,MING Z,ZHANG Y,et al.The use of dependency relation graph to enhance the term weighting in question retrieval[C]//International Conference on Computational Linguistics,2012:3105-3120. [13] ANDROUTSOPOULOS I,MALAKASIOTIS P.A survey of paraphrasing and textual entailment methods[J].Journal of Artificial Intelligence Research,2010,38:135-187. [14] HARABAGIU S,LACATUSU V,HICKL A.Answering complex questions with random walk models[C]//International Conference on Research on Development in Information Retrieval,2006:220-227. [15] LACATUSU V,HICKL A,HARABAGIU S.Impact of question decomposition on the quality of answer summaries[C]//Language Resources and Evaluation Conference,2006:1147-1152. [16] HICKL A,WANG P,LEHMANN J,et al.FERRET:interactive question-answering for real-world environments[C]//Annual Meeting of the Association for Computational Linguistics,2006:25-28. [17] HARTRUMPF S.Semantic decomposition for question answering[C]//European Conference on Artificial Intelligence,2008:313-317. [18] KALYANPUR A,PATWARDHAN S,BOGURAEV B,et al.Fact-based question decomposition for candidate answer re-ranking[C]//ACM International Conference on Information and Knowledge Management,2011:2045-2048. [19] KALYANPUR A,PATWARDHAN S,BOGURAEV B,et al.Fact-based question decomposition in DeepQA[J].IBM Journal of Research and Development,2012,56(3):13. [20] KALYANPUR A,PATWARDHAN S,BOGURAEV B,et al.Parallel and nested decomposition for factoid questions[C]//European Chapter of the Association for Computational Linguistics,2012:851-860. [21] 王振宇,陆辰,葛唯益,等.基于句法模板的复杂问题分解方法[J].指挥信息系统与技术,2019,10(5):24-27. WANG Z Y,LU C,GE W Y,et al.Complex question decomposition method based on syntactic template[J].Command Information System and Technology,2019,10(5):24-27. [22] ZHENG W G,YU J X,ZOU L,et al.Question answering over knowledge graphs:question understanding via template decomposition[J].VLDB Journal,2018,11(11):1373-1386. [23] SAQUETE E,MARTíNEZ-BARCO P,MU?OZ R.Splitting complex temporal questions for question answering systems[C]//Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics,2004:566-573. [24] MIN S,ZHONG V,ZETTLEMOYER L,et al.Multi-hop reading comprehension through question decomposition and rescoring[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics,2019:6097-6109. [25] 屠可伟,李俊.句法分析前沿动态综述[J].中文信息学报,2020,34(7):30-41. TU K W,LI J.A survey of recent developments in syntactic parsing[J].Journal of Chinese Information Processing,2020,34(7):30-41. [26] 欧石燕,唐振贵.面向图书馆关联数据的自动问答技术研究[J].中国图书馆学报,2015,41(6):44-60. OU S Y,TANG Z G.A question answering method over library linked data[J].Journal of Library Science in China,2015,41(6):44-60. [27] 刘雄,张宇,张伟男,等.基于依存句法分析的复合事实型问句分解方法[J].中文信息学报,2017,31(3):140-146. LIU X,ZHANG Y,ZHANG W N,et al.A decomposition method for complex factoid questions based on dependency parsing[J].Journal of Chinese Information Processing,2017,31(3):140-146. [28] 刘雄.问答系统中复合事实型问句分解技术研究[D].哈尔滨:哈尔滨工业大学,2015. LIU X.Research on decomposition techniques for complex factoid questions in question answring system[D].Harbin:Harbin Institute of Technology,2015. [29] 代印唐,吴承荣,马胜祥,等.层级分类概率句法分析[J].软件学报,2011,22(2):245-257. DAI Y T,WU C R,MA S X,et al.Hierarchically classified probabilistic grammar parsing[J].Journal of Software,2011,22(2):245-257. [30] YAN H,QIU X P,HUANG X J.A graph-based model for joint Chinese word segmentation and dependency parsing[J].Transactions of the Association for Computational Linguistics,2020,8:78-92. [31] WU L Z,ZHANG M S.Deep graph-based character-level Chinese dependency parsing[J].Institute of Electrical and Electronics Engineers,2021,29:1329-1339. [32] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [33] HUANG Z,XU S Y,HU M H,et al.Recent trends in deep learning based open-domain textual question answering systems[J].Institute of Electrical and Electronics Engineers,2020,8:94341-94356. [34] VASWANI A,SHAZEER S,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems 30:Annual Conference on Neural Information Processing Systems,2017:6000-6010. [35] ZHANG H Y,CAI J J,XU J J,et al.Complex question decomposition for semantic parsing[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics,2019:4477-4486. [36] KHOT T,KHASHABI D,RICHARDSON K,et al.Text modular networks:learning to decompose tasks in the language of existing models[C]//Conference of the North American Chapter of the Association for Computational Linguistics,2021:1264-1279. [37] FU R L,WANG H,ZHANG X J,et al.Decomposing complex questions makes multi-hop QA easier and more interpretable[C]//Conference on Empirical Methods in Natural Language Processing,2021:169-180. [38] WOLFSON T,GEVA M,GUPTA A,et al.Break it down:a question understanding benchmark[J].Transactions of the Association for Computational Linguistics,2020,8:183-198. [39] HASSON M,BERANT J.Question decomposition with dependency graphs[J].arXiv:2104.08647,2021. [40] WANG B,SHIN R,LIU X D,et al.RAT-SQL:relation-aware schema encoding and linking for text-to-SQL parsers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:7567-7578. [41] DAI Z H,YANG Z L,YANG Y M,et al.Transformer-XL:attentive language models beyond a fixed-length context[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics,2019:2978-2988. [42] 赵港,王千阁,姚烽,等.大规模图神经网络系统综述[J].软件学报,2012,33(1):150-170. ZHAO G,WANG Q G,YAO F,et al.Survey on large-scale graph neural network systems[J].Journal of Software,2012,33(1):150-170. [43] WANG K,MING Z Y,HU X,et al.Segmentation of multi-sentence questions:towards effective question retrieval in cQA services[C]//Proceedings of the 33rd International Conference on Research and Development in Information Retrieval,2010:387-394. [44] 张宸嘉,朱磊,俞璐.卷积神经网络中的注意力机制综述[J].计算机工程与应用,2021,57(20):64-72. ZHANG C J,ZHU L,YU L.Review of attention mechanism in convolutional neural networks[J].Computer Engineering and Applications,2021,57(20):64-72. [45] TALMOR A,BERANT J.The web as a knowledge-base for answering complex questions[C]//The Annual Conference of the North American Chapter of the Association for Computational Linguistics,2018:641-651. [46] VINYALS O,FORTUNATO M,JAITLY N.Pointer networks[C]//Advances in Neural Information Processing System,2015:2674-2682. [47] BHUTANI N,ZHENG X,JAGADISH H V.Learning to answer complex questions over knowledge bases with query composition[C]//Conference on Information and Knowledge Management,2019:739-748. [48] BHUTANI N,ZHENG X,QIAN K.Answering complex questions by combining information from curated and extracted knowledge bases[C]//Proceedings of the First Workshop on Natural Language Interfaces,2020:1-10. [49] 李威宇.问答系统中复合问句分解技术研究[D].哈尔滨:哈尔滨工业大学,2019. LI W Y.Research on decomposition technologies of complex questions in question answering system[D].Harbin:Harbin Institute of Technology,2019. [50] JIANG Y C,BANSAL M.Self-assembling modular networks for interpretable multi-hop reasoning[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019:4473-4483. [51] SHIN S,LEE K.Processing knowledge graph-based complex questions through question decomposition and recomposition[J].Information Sciences,2020,523:234-244. [52] HU X X,SHU Y H,HUANG X,et a.EDG-based question decomposition for complex question answering over knowledge bases[C]//IEEE International Semantic Web Conference,2021:128-145. [53] TRIVEDI P,MAHESHWARI G,DUBEY M,et al.LC-QuAD:a corpus for complex question answering over knowledge graph[C]//IEEE International Semantic Web Conference,2017:210-218. [54] 萨日娜,李艳玲,林民.知识图谱推理问答研究综述[J].计算机科学与探索,2022,16(8):1727-1741. SA R N,LI Y L,LIN M.A survey of question answering based on knowledge graph reasoning[J].Journal of Frontiers of Computer Science and Technology,2022,16(8):1727-1741. [55] XIONG W H,HOANG T,WANG W Y.DeepPath:a reinforcement learning method for knowledge graph reasoning[C]//Conference on Empirical Methods in Natural Language Processing,2017:564-573. [56] ZHANG Y N,CHENG X,ZHANG Y F,et al.Learning to order sub-questions for complex question answering[J].arXiv:1911.04065,2019. [57] DAS R,DHULIAWALA S,ZAHEER M,et al.Go for a walk and arrive at the answer:reasoning over paths in knowledge bases using reinforcement learning[C]//International Conference on Learning Representations,2018. [58] ZHANG L W,WINN J,TOMIOKA R.Gaussian attention model and its application to knowledge base embedding and question answering[J].arXiv:1611.02266,2016. [59] PEREZ E,LEWIS P,YIH W,et al.Unsupervised question decomposition for question answering[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,2020:8864-8880. [60] 王智悦,于清,王楠,等.基于知识图谱的智能问答研究综述[J].计算机工程与应用,2020,56(23):1-11. WANG Z Y,YU Q,WANG N,et al.Survey of intelligent question answering research based on knowledge graph[J].Computer Engineering and Applications,2020,56(23):1-11. [61] YANG Z L,QI P,ZHANG S Z,et al.HotpotQA:a dataset for diverse,explainable multi-hop question answering[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,2018:2369-2380. [62] YIH W,RICHARDSON M,MEEK C,et al.The value of semantic parse labeling for knowledge base question answering[C]//The Association for Computer Linguistics,2016:201-206. [63] QIU L,XIAO Y X,QU Y R,et al.Dynamically fused graph network for multi-hop reasoning[C]//The Association for Computational Linguistics,2019:6140-6150. [64] SUN H T,BEDRAX-WEISS T,COHEN W W.PullNet:open domain question answering with iterative retrieval on knowledge bases and text[C]//Conference on Empiri-cal Methods in Natural Language Processing,2019:2380-2390. [65] SUN H T,DHINGRA B,ZAHEER M,et al.Open domain question answering using early fusion of knowledge bases and text[C]//Conference on Empirical Methods in Natural Language Processing,2018:4231-4242. [66] QIN K C,LI C,PAVLU V,A,et al.Improving query graph generation for complex question answering over knowledge base[C]//Conference on Empirical Methods in Natural Language Processing,2021:4201-4207. [67] CHEN S,LIU Q,YU Z W,et al.ReTraCk:a flexible and efficient framework for knowledge base[C]//Proceedings of the 11th International Joint Conference on Natural Language Processing,2021:325-336. [68] PAPINENI K,ROUKOS S,WARD T,et al.BLEU:a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,2002:311-318. [69] LIN C.Rouge:a package for automatic evaluation of summaries[C]//Workshop on Text Summarization Branches Out,2004:74-81. [70] GOODFELLOW J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Annual Conference on Neural Information Processing Systems,2014:2672-2680. |
[1] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[2] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[3] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[4] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[5] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[6] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
[7] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[8] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[9] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[10] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[11] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[12] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[13] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[14] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
[15] | 汪晶, 王恺, 严迎建. 基于条件生成对抗网络的侧信道攻击技术研究[J]. 计算机工程与应用, 2022, 58(6): 110-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||