计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (14): 73-79.DOI: 10.3778/j.issn.1002-8331.2110-0312
孙璐,梁永全
SUN Lu, LIANG Yongquan
摘要: 针对基于密度的噪声应用空间聚类算法(density based spatial clustering of applications with noise,DBSCAN)计算复杂度较高以及无法聚类多密度数据集等问题,提出了一种网格聚类算法和DBSCAN相结合的融合聚类算法(G_FDBSCAN)。利用网格划分技术将数据集划分为稀疏区域和密集区域,分而治之,降低计算的时间复杂度和采用全局参数引起的聚类误差;改进传统的DBSCAN聚算法得到FDBSCAN,将密集区域中网格聚类的结果作为一个整体参与后续的聚类,在网格划分基础上进行邻域检索,减少邻域检索和类扩展过程中对象的无效查询和重复查询,进一步减少时间开销。理论分析和实验测试表明,改进后的算法与DBSCAN算法、DPC算法、KMEANS算法、BIRCH算法和CBSCAN算法相比,在聚类结果接近或达到最优的情况下,聚类效率分别平均提升了24倍、11倍、2倍、3倍和1倍。