计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (23): 214-220.DOI: 10.3778/j.issn.1002-8331.2105-0422
毛君宇,何廷年,郭艺,李爱斌
MAO Junyu, HE Tingnian, GUO Yi, LI Aibin
摘要: 近年来基于深度学习的人脸表情识别技术已取得很大进展,但对于表情特征的多尺度提取,以及在不受约束的现实场景中进行面部表情识别仍然是具有挑战性的工作。为解决此问题,提出一种金字塔卷积神经网络与注意力机制结合的表情识别方法。对于初始的一张人脸表情图像,将其按照区域采样裁剪成多张子图像,将原图像和子图像输入到金字塔卷积神经网络进行多尺度特征提取,将提取到的特征图输入到全局注意力模块,给每一张图像分配一个权重,从而得到有重要特征信息的图像,将子图像和原始图像的特征进行加权求和,得到新的含有注意力信息的全局特征,最终进行表情识别分类。在CK+、RAF-DB、AffectNet三个公开表情数据集上分别取得了98.46%、87.34%、60.45%的准确率,提高了表情的识别精度。