计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (15): 220-228.DOI: 10.3778/j.issn.1002-8331.2012-0409
吴昊,赖惠成,钱绪泽,陈豪
WU Hao, LAI Huicheng, QIAN Xuze, CHEN Hao
摘要: 随着卷积神经网络的发展,视频超分辨率算法取得了显著的成功。因为帧与帧之间的依赖关系比较复杂,所以传统方法缺乏对复杂的依赖关系进行建模的能力,难以对视频超分辨率重建的过程进行精确地运动估计和补偿。因此提出一个基于光流残差的重建网络,在低分辨率空间使用密集残差网络得到相邻视频帧的互补信息,通过金字塔的结构来预测高分辨率视频帧的光流,通过亚像素卷积层将低分辨率的视频帧变成高分辨率视频帧,并将高分辨率的视频帧与预测的高分辨率光流进行运动补偿,将其输入到超分辨率融合网络来得到更好的效果,提出新的损失函数训练网络,能够更好地对网络进行约束。在公开数据集上的实验结果表明,重建效果在峰值信噪比、结构相似度、主观视觉的效果上均有提升。