计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 312-318.DOI: 10.3778/j.issn.1002-8331.2012-0363
张绪冰,谢雨飞
ZHANG Xubing, XIE Yufei
摘要: 道路车辆拥堵问题导致交通事故增加,降低了居民的出行效率,长时间的道路拥堵更是加重了环境污染,造成国家经济损失等诸多问题。为缓解城市道路交通的拥堵问题,提高出行效率,基于隐马尔可夫模型,针对已有道路拥堵时间数据进行采集与建模,并对该隐马尔可夫模型进行训练,通过算法计算与分析,预测未来一段时间的道路拥堵情况,为人们的出行提供拥堵时间预测,而后提出不同时段通过道路用时最短的最优路径。对韦尔奇算法进行改进,在原算法基础上增加考虑前[n]时刻状态。利用改进型韦尔奇算法,使得训练集参数更精确,达到预测精度更高的目的。实验结果表明,预测数据结果与真实数据相比,误差不超过3%,该模型预测结果具有较高准确性。