计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (36): 192-194.DOI: 10.3778/j.issn.1002-8331.2010.36.053

• 图形、图像、模式识别 • 上一篇    下一篇

不用高斯平滑的边缘活动轮廓模型

冯玉玲,何传江,李 梦   

  1. 重庆大学 数学与统计学院,重庆 401331
  • 收稿日期:2010-08-06 修回日期:2010-10-26 出版日期:2010-12-21 发布日期:2010-12-21
  • 通讯作者: 冯玉玲

Edge-based active contour model without Gaussian smoothing

FENG Yu-ling,HE Chuan-jiang,LI Meng   

  1. College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China
  • Received:2010-08-06 Revised:2010-10-26 Online:2010-12-21 Published:2010-12-21
  • Contact: FENG Yu-ling

摘要: 在基于边缘的活动轮廓模型中,边缘停止函数的选择是十分重要的。边缘停止函数是一个单调递减的正函数和高斯平滑后的图像梯度模的复合函数。基于这种边缘停止函数的活动轮廓模型存在两个缺点:一是在同质区域演化速度慢;二是图像需要预先进行高斯平滑(滤波),但平滑噪声的同时,也平滑了目标边缘,可能使分割不够准确。提出一个新的不用高斯平滑的边缘停止函数。实验表明,基于这种边缘停止函数的活动轮廓模型能够减少迭代次数与分割时间约50%。

关键词: 图像分割, 活动轮廓模型, 边缘停止函数, 高斯滤波

Abstract: The edge stopping function is very important in edge-based active contour models.It is typically the composition of a strictly monotonically decreasing positive function and the gradient magnitude of Gaussian smoothed image.The active contour models based on this type of edge stopping function have the drawbacks of long evolving time and need for Gaussian filter.Although Gaussian filter smoothes noise,it may also smooth edges;it is possible for the active contour models to inaccurately locate the edges.A new edge stopping function without Gaussian smoothing is proposed to overcome the two drawbacks above.Experimental results show that an active contour model based on the new edge stopping function is about 50% faster than the original model.

Key words: image segmentation, active contour model, edge stopping function, Gaussian filter

中图分类号: