计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (31): 222-224.DOI: 10.3778/j.issn.1002-8331.2010.31.062

• 工程与应用 • 上一篇    下一篇

RS_SVM在装备维修费用预测中的应用

周辅疆1,2,田伟峰1,朱小冬1   

  1. 1.军械工程学院 装备指挥与管理系,石家庄 050003
    2.镇江船艇学院,江苏 镇江 212003
  • 收稿日期:2009-03-23 修回日期:2009-05-25 出版日期:2010-11-01 发布日期:2010-11-01
  • 通讯作者: 周辅疆

Applications of RS_SVM in equipment maintenance costs prediction

ZHOU Fu-jiang1,2,TIAN Wei-feng1,ZHU Xiao-dong1   

  1. 1.Department of Equipment Command & Management,Ordnance Engineering College,Shijiazhuang 050003,China
    2.Zhenjiang Watercraft College of the PLA,Zhenjiang,Jiangsu 212003,China
  • Received:2009-03-23 Revised:2009-05-25 Online:2010-11-01 Published:2010-11-01
  • Contact: ZHOU Fu-jiang

摘要: 在分析粗糙集和支持向量机原理及各自的优缺点基础上,提出将粗糙集与支持向量机相结合的方法,构建了基于粗糙集与支持向量机(RS-SVM)的预测模型,并将该模型应用于装备维修费用预测。以某装备维修费用为例进行实例验证,计算结果表明,这种方法比其他方法有更好的预测精度。

关键词: 粗糙集, 支持向量机, 装备维修费用, 预测

Abstract: Based on analyzing advantage and defect of the Rough Sets(RS) theory and Support Vector Machines(SVM),a minimum decision network combining RS and SVM in intelligence is brought forward.A kind of forecasting model based on RS-SVM is designed and applied on the prediction of equipment maintenance costs.An example of the prediction of equipment maintenance costs is given,and the result shows that the method can bring less error and better predicted precision compared with other methods.

Key words: Rough Sets(RS) theory, Support Vector Machines(SVM), equipment maintenance costs, prediction

中图分类号: