计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (31): 54-56.DOI: 10.3778/j.issn.1002-8331.2010.31.015

• 研究、探讨 • 上一篇    下一篇

基于Petri网建模的并行粒子群算法

周 辉,乐晓波   

  1. 长沙理工大学 计算机与通信工程学院,长沙 410076
  • 收稿日期:2009-04-07 修回日期:2009-06-02 出版日期:2010-11-01 发布日期:2010-11-01
  • 通讯作者: 周 辉

Parallel particles warm optimization algorithm based on Petri net model

ZHOU Hui,YUE Xiao-bo   

  1. Department of Computer & Communication Engineering,Changsha University of Science and Technology,Changsha 410076,China
  • Received:2009-04-07 Revised:2009-06-02 Online:2010-11-01 Published:2010-11-01
  • Contact: ZHOU Hui

摘要: 粒子群优化算法,起源于鸟群行为的研究,是一种基于群智能的进化计算技术,通过粒子之间的协作与竞争以实现对多维复杂空间的高效搜索。提出了基于Petri网的并行粒子群算法,并采用经典测试函数验证算法的有效性。测试结果表明,算法能很好地控制粒子群优化过程中的早熟问题,并能够较好地得到群落全局最优解。

关键词: Petri网, 并行理论, 并行粒子群算法

Abstract: Particle swarm optimization,rooting from simulation of swarm of birds,is a new branch of evolution algorithms based on swarm intelligence,realizing effective search on multi-dimension complex spaces through cooperation and competition between particles.The paper defines a parallel particles warm optimization algorithm based on Petri net.Experiment results demonstrate that the algorithm has bigger speed of convergence and better optimizing result compared with the other particles warm optimization.

Key words: Petri net, parallel theory, parallel particles warm optimization algorithm

中图分类号: