计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (25): 142-145.DOI: 10.3778/j.issn.1002-8331.2010.25.042
洪亮亮,罗 可
HONG Liang-liang,LUO Ke
摘要: 传统的聚类算法都是使用硬计算来对数据对象进行划分,然而现实中不同类之间对象通常没有明确的界限。粗糙集理论提供了一种处理边界对象不确定的方法。因此将粗糙理论与k-均值方法相结合。同时,传统的k-均值聚类方法必须事先给定聚类数k,但实际情况下k很难确定;另外虽然传统k-均值算法局部搜索能力强,但容易陷入局部最优。遗传算法能得到全局最优解,但收敛过快。鉴于此,提出了一种改进的基于遗传算法的的粗糙聚类方法。该算法能动态地生成k-均值聚类数,采用最大最小原则生成初始聚类中心,同时结合粗糙集理论的上近似和下近似处理边界对象。最后,用UCI的Iris数据集分别对算法进行实际验证。实验结果表明,该算法具有较高的正确率,综合性能更加稳定。
中图分类号: