计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (15): 1-6.DOI: 10.3778/j.issn.1002-8331.2010.15.001

• 博士论坛 • 上一篇    下一篇

全局保持的流形学习算法对比研究

曾宪华1,罗四维2   

  1. 1.重庆邮电大学 计算机科学与技术研究所,重庆400065
    2.北京交通大学 计算机与信息技术学院,北京 100044
  • 收稿日期:2009-12-01 修回日期:2010-03-17 出版日期:2010-05-21 发布日期:2010-05-21
  • 通讯作者: 曾宪华

Contrasting research of global preserving manifold learning algorithms

ZENG Xian-hua1,LUO Si-wei2   

  1. 1.Institute of Science & Technology of Computer,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
    2.School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China
  • Received:2009-12-01 Revised:2010-03-17 Online:2010-05-21 Published:2010-05-21
  • Contact: ZENG Xian-hua

摘要: 全局保持的流形学习算法主要是基于保持高维观测空间和内在低维流形的全局几何特性。详细比较了全局保持的典型流形学习算法的特点及其相互之间的联系,标明了它们的优点与缺陷。实验说明这些方法发现的内在维数和内在低维流形的差异。最后提出了一些新的流形学习研究方向。

关键词: 全局保持, 谱方法, 核主成分分析, 等度规映射, 最大方差展开

Abstract: Global preserving manifold learning algorithms are mainly based on preserving global geometric properties between high-dimensional observed space and intrinsic low-dimensional manifold.This paper compares in detail the characters and interrelations of several classical manifold learning algorithms based on preserving global properties.Some advantages and shortcomings of these algorithms are shown.Experimental results demonstrate the differences of these algorithms about intrinsic dimension and intrinsic low-dimensional manifold.Finally,several new research directions of manifold learning are proposed.

Key words: global preserving, spectral method, kernel Principal Components Analysis, ISOmetric MAPping, Maximum Variance Unfolding

中图分类号: