计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (33): 138-140.DOI: 10.3778/j.issn.1002-8331.2009.33.045
杜海顺1,2,汪凤泉2
DU Hai-shun1,2,WANG Feng-quan2
摘要: FCM用于彩色图像分割存在聚类数目需要事先确定、计算速度慢的问题,为此,提出一种快速的模糊C均值聚类方法(FFCM)。首先,对原始彩色图像进行基于梯度图的分水岭变换,从而把原始彩色图像数据分成一些具有色彩一致性的子集;然后,利用这些子集的大小和中心点进行模糊聚类。由于FFCM聚类样本数量显著减小,因此可以大幅提高模糊C均值聚类算法的计算速度,进而可以采用聚类有效性指标确定聚类数目。实验表明,这种方法不需要事先确定聚类数目,在聚类有效性能不变的前提下,可以使模糊聚类的速度得到明显提高,实现了彩色图像的快速分割。
中图分类号: