计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (31): 186-189.DOI: 10.3778/j.issn.1002-8331.2009.31.056

• 图形、图像、模式识别 • 上一篇    下一篇

一种有效的SAR图像自动目标识别方法

毛良瑾,何丽莎,解利军   

  1. 浙江大学 工程与科学计算中心,杭州 310027
  • 收稿日期:2008-06-15 修回日期:2008-09-05 出版日期:2009-11-01 发布日期:2009-11-01
  • 通讯作者: 毛良瑾

Effective approach for automatic target recognition in SAR images

MAO Liang-jin,HE Li-sha,XIE Li-jun   

  1. Center for Engineering and Scientific Computation,Zhejiang University,Hangzhou 310027,China
  • Received:2008-06-15 Revised:2008-09-05 Online:2009-11-01 Published:2009-11-01
  • Contact: MAO Liang-jin

摘要: 提出了一种有效的SAR图像中自动目标识别的方法。首先采取双阈值CFAR目标分割算法对SAR图像进行目标分割。通过对SAR图像的空间局部特征和PCA全局特征的提取,在参数学习的基础上,结合了遗传算法进行迭代优化获取分类器,实现SAR图像的自动目标识别。该方法可以直接对原始图像进行计算,避免了基于数据特征计算所带来的问题。实验结果显示,这种基于遗传算法的自动目标识别方法对T-72和BMP2坦克进行识别,获得了较好的识别率。

关键词: 自动目标识别, 遗传算法, 主成分分析, 双阈值CFAR分割, 合成孔状雷达

Abstract: An effective approach for automatic target recognition in SAR(Synthetic Aperture Radar) images is proposed.The SAR targets are segmented by a double CFAR(Constant False Alarm Rate) segmentation method for SAR targets.With the space local features and overall PCA(Prinicpal Component Analysis) features extract from the SAR images,the targets are recognized by the method based on parameter learning and a combination of genetic algorithm optimization on the classifier.This method does calculation on the original image directly,avoids mass problems of compute depending on the data model.The result shows that the automatic target recognition method based on genetic algorithm performs well to targets T-72 and BMP2.

Key words: automatic target recognition, genetic algorithm, Prinicpal Component Analysis(PCA), double CFAR segmentation, Synthetic Aperture Radar(SAR)

中图分类号: