计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (31): 111-114.DOI: 10.3778/j.issn.1002-8331.2009.31.033

• 数据库、信号与信息处理 • 上一篇    下一篇

基于汉语框架网的中文问题分类

李 茹1,2,宋小香1,王文晶1   

  1. 1.山西大学 计算机与信息技术学院,太原 030006
    2.山西大学 计算智能与中文信息处理教育部重点实验室,太原 030006
  • 收稿日期:2009-05-18 修回日期:2009-06-18 出版日期:2009-11-01 发布日期:2009-11-01
  • 通讯作者: 李 茹

Chinese question classification based on Chinese FrameNet

LI Ru1,2,SONG Xiao-xiang1,WANG Wen-jing1   

  1. 1.School of Computer & Information Technology,Shanxi University,Taiyuan 030006,China
    2.Computer Intelligent and Chinese Information Processing of the Ministry Education Key Laboratory Built Together by Province and Department,Taiyuan 030006,China
  • Received:2009-05-18 Revised:2009-06-18 Online:2009-11-01 Published:2009-11-01
  • Contact: LI Ru

摘要: 问题分类是问答系统中重要的组成部分,问题分类结果的准确性直接影响到问答系统的质量。基于汉语框架网(Chinese FrameNet,CFN)提出了一种用于中文问题分类的新方法。该方法通过构建一系列汉语框架语义特征来表达每个问句的语义信息,进而使用最大熵模型进行中文问题的自动分类,与传统的问题分类技术相比,汉语框架语义信息的加入使得中文问题分类的精度得到了显著提高。实验结果进一步验证了该方法的有效性,大类和小类的分类精度分别达到了91.38%和83.20%。

关键词: 汉语框架网, 问题分类, 最大熵模型

Abstract: Question classification is very important for question answering,and its accuracy affects the performance of the question answering system.This paper introduces a method of Chinese question classification based on Chinese FrameNet(CFN).In this method,a series of features are firstly constructed to express each question’s semantic information,and then Maximum Entropy Model is used to implement question classifier.Compared to the traditional methods,semantic information of Chinese FrameNet can improve the performance of question classification significantly.The experiment result shows that this method is effective and the classification accuracy of coarse classes and fine classes achieves 91.38% and 83.20% respectively.

Key words: Chinese FrameNet, question classification, maximum entropy model

中图分类号: