计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (28): 10-12.DOI: 10.3778/j.issn.1002-8331.2009.28.003

• 博士论坛 • 上一篇    下一篇

关于Hilbert空间量子效应下确界的研究

陈峥立,曹怀信   

  1. 陕西师范大学 数学与信息科学学院,西安 710062
  • 收稿日期:2009-06-22 修回日期:2009-08-03 出版日期:2009-10-01 发布日期:2009-10-01
  • 通讯作者: 陈峥立

Researches on infimum of Hilbert space quantum effect

CHEN Zheng-li,CAO Huai-xin   

  1. College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062,China
  • Received:2009-06-22 Revised:2009-08-03 Online:2009-10-01 Published:2009-10-01
  • Contact: CHEN Zheng-li

摘要: 量子的下确界问题是量子计算和量子信息中的一个重要问题,对于这一问题,首先运用一种简单的方法证明了Kadison的一个结果:设AB∈Her(BH)),则AB在Her(BH))存在当且仅当AB可比较;然后讨论了BH+和Hilbert空间效应代数εH)中的下确界问题。最后,通过一个例子给出:对于两个量子效应AB,虽然ABA2B2εH)中存在,但是A2B2≠(AB2

关键词: 下确界, 量子效应, 正算子

Abstract: Infimum of quantum effects is an important question in quantum information and quantum computation.For this question,it is proved to the Kadison’s conclusion by using a simple method,if AB∈Her(BH)),the infimum AB exists if and only if A and B are comparable.Secondly,it is discussed to the relationship between the existence of AB in BH)+ and the existence of AB in εH).Finally,a counter-example is given to show that the existence of AB and A2B2 in εH),but A2B2≠(AB2

Key words: infimum, quantum effect, positive operator

中图分类号: