计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (21): 218-221.DOI: 10.3778/j.issn.1002-8331.2009.21.063
并联混合神经网络模型及应用研究
曹云忠
CAO Yun-zhong
摘要: 单一神经网络难以对复杂模型做出准确的预测,提出了一种并联型混合神经网络模型用于对复杂的系统进行预测,该模型由径向基函数网络、BP网络和控制模块组成。控制模块用于线性映射层,将两种单一神经网络的输出结合并得到最终的输出结果。详细地给出了混合模型的预测方法:首先,利用改进算法分别训练径向基函数网络和BP网络;其次,采用自适应遗传算法优化线性映射层以获得更好的预测精度;最后,利用两个实例比较单一神经网络和提出的混合网络的预测性能。实验表明,混合神经网络在预测精度上比单一网络具有更优的性能,同时,该混合模型为复杂系统提供了一种通用的预测工具。