计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (20): 45-48.DOI: 10.3778/j.issn.1002-8331.2009.20.013

• 研究、探讨 • 上一篇    下一篇

求解多背包问题的混合遗传算法

宋海生1,2,3,傅仁毅1,徐瑞松2,宋海洲4   

  1. 1.顺德学院 计算机技术系,广东 佛山 528300
    2.中国科学院 广州地球化学研究所,广州 510640
    3.中国科学院 研究生院,北京 100049
    4.华侨大学 数学科学学院,福建 泉州 362021
  • 收稿日期:2008-12-30 修回日期:2009-02-26 出版日期:2009-07-11 发布日期:2009-07-11
  • 通讯作者: 宋海生

Hybrid genetic algorithm for multi-knapsack problem

SONG Hai-sheng 1,2,3,FU Ren-yi 1,XU Rui-song 2,SONG Hai-zhou 4   

  1. 1.Department of Computer Technology,Shunde College,Foshan,Guangdong 528300,China
    2.Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
    3.Graduate University of the Chinese Academy of Sciences,Beijing 100049,China
    4.School of Mathematical Sciences,Huaqiao University,Quanzhou,Fujian 362021,China
  • Received:2008-12-30 Revised:2009-02-26 Online:2009-07-11 Published:2009-07-11
  • Contact: SONG Hai-sheng

摘要: 针对多背包问题最优解的求解,设计了一种新的价值密度;在此基础上结合传统的贪心算法,提出了一种求解多背包问题的混合遗传算法。该算法采用整数编码,并采用轮盘赌选择方法,对背包资源利用不足的可行解进行修正处理,对不可行解进行修复处理。并在大量的数值实验的基础上,将该方法与传统方法及简单遗传算法进行比较,实验结果表明,该混合遗传算法提高了问题求解的速度和精度,有一定的优越性。

关键词: 多背包问题, 不可行解, 贪心法, 遗传算法

Abstract: This paper designs a new profit-density for solving multi-knapsack problem firstly,and then proposes a new Hybrid Genetic Algorithm(HGA) based on greedy algorithm.The algorithm uses the integer code,applies roulette wheel selection method,amends the feasible solution which knapsack resources are insufficient for use,and repairs the infeasible solution.Finally this paper compares HGA with other common mathematical methods and Simple Genetic Algorithm(SGA) for solving this problem on the basis of many numerical experiments,the results show that HGA is more efficient than other methods in the speed and accuracy.

Key words: multi-knapsack problem, infeasible solution, greedy algorithm, genetic algorithm