计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (7): 44-45.DOI: 10.3778/j.issn.1002-8331.2009.07.014

• 研究、探讨 • 上一篇    下一篇

£ukasiewicz命题逻辑系统中有限命题集的约简理论

李立峰,张建科,冯 锋   

  1. 西安邮电学院 应用数理系,西安 710121
  • 收稿日期:2008-09-03 修回日期:2008-12-08 出版日期:2009-03-01 发布日期:2009-03-01
  • 通讯作者: 李立峰

Reduction theory of finite proposition set in £ukasiewicz propositional logic

LI Li-feng,ZHANG Jian-ke,FENG Feng   

  1. Department of Applied Mathematics and Physics,Xi’an Institute of Posts and Telecommunications,Xi’an 710121,China
  • Received:2008-09-03 Revised:2008-12-08 Online:2009-03-01 Published:2009-03-01
  • Contact: LI Li-feng

摘要: n值£ukasiewicz命题逻辑中提出了命题集Г的约简理论,引入由命题集Г所诱导的形式背景的概念,从Г及其子集的关系出发给出了n值命题逻辑中有限命题集Г约简的判定定理以及求Г约简的方法。说明了无穷值£ukasiewicz命题逻辑中命题集Г的约简可转化为n值情形。

关键词: £, ukasiewicz命题逻辑, 完备性定理, Г约简, 形式背景

Abstract: The theory of Г-reduction in n-valued £ukasiewicz propositional logic is introduced,the formal context of the propositional set Г is introduced and investigated.Several ways to determine the Г-reduction are studied by investigating the relationship between Г and their subsets.The reduction of propositional set Г in £ukasiewicz infinite valued logic can be reduced to n-valued £ukasiewicz propositional logic.

Key words: £, ukasiewicz propositional logic, complete theorem, Г-reduction, formal context