计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (35): 40-42.DOI: 10.3778/j.issn.1002-8331.2008.35.012
黄冀卓1,王 湛2
HUANG Ji-zhuo1,WANG Zhan2
摘要: 在微粒群优化算法PSO中引入梯度算法,提出了一种新型的混合微粒群优化算法——GPSO。该混合优化算法是对PSO每一次进化后的所有微粒进一步执行梯度法寻优操作,并以寻找到的更优个体替代当前个体参与群体的下一代进化。GPSO既利用了PSO出色的全局搜索能力,又借助梯度法的快速局部寻优能力,很好地将两者的优势结合在一起。数值实验表明:无论是对于低维的多峰函数,还是高维的多峰和单峰病态函数,GPSO都表现出很强的优化效率、适用性和鲁棒性。