计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (16): 258-264.DOI: 10.3778/j.issn.1002-8331.2005-0250
程子均,马六章,张翼翔
CHENG Zijun, MA Liuzhang, ZHANG Yixiang
摘要:
传统的工作面瓦斯预测方法仅利用瓦斯数据的时间特性,缺乏与空间相关的先验信息,因此利用瓦斯数据的时空特性,采用深度学习算法长短期记忆与全连接神经网络相结合的方法构建LSTM-FC(Long Short Time Memory-Fully Connection)瓦斯浓度时空序列的预测模型。LSTM能够解决瓦斯序列的长时间依赖性,全连接神经网络能够准确捕捉瓦斯序列的空间关联性,深入挖掘瓦斯数据之间的时空特性,通过预测不同位置的瓦斯值,构造工作面的瓦斯分布图。实验结果表明,通过使用LSTM-FC模型,预测误差有了明显减少,相比于其他神经网络预测模型,预测精度有所提高。