计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (9): 213-220.DOI: 10.3778/j.issn.1002-8331.1911-0032
周翔宇,高仲合
ZHOU Xiangyu, GAO Zhonghe
摘要:
为了提升倾斜文本区域定位的准确度,提出了一种基于YOLO算法改进的YOLO_BOX定位模型。设置不同尺寸的anchor对图片进行训练,且定义LOSS损失函数训练预测模型;使用K-means算法对box进行聚类,并利用NMS方法进行多余候选框过滤;利用Angle Correct算法对聚类后的box进行灰度化处理,通过计算像素灰度值的方差来得到文字的倾斜角度并进行角度矫正。实验结果表明,优化后的YOLO_BOX定位模型在ICDAR2015数据集上,对自然场景中倾斜文本区域的定位中具有较高的准确率和召回率。