计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (21): 135-141.DOI: 10.3778/j.issn.1002-8331.1903-0045
房国志,孙康瞳
FANG Guozhi, SUN Kangtong
摘要: 通过观察人脸估计年龄较为常见,但如何准确预测年龄则是一个难题。为提高人脸图像年龄估计的准确率,提出一种基于YOLO(You Only Look Once)模型的目标检测方法。将多尺度回归思想应用于卷积神经网络(Convolutional Neural Network,CNN),通过多尺度卷积改善模型对小尺寸目标的提取能力,结合特征通道分权重思想,改善特征提取操作中特征信息丢失的问题,构造决策树回归得到年龄估计。这种方法在人脸年龄图像库FG-NET上获得平均绝对误差(MAE)3.43,在GROUP数据集获得区间匹配度(AEM)62.4%。实验结果表明,通过多尺度特征回归以及通道权重分配,可以较为准确地进行人脸信息检测,并由此建立鲁棒性更强的人脸年龄估计模型。