计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (20): 208-215.DOI: 10.3778/j.issn.1002-8331.1901-0239

• 工程与应用 • 上一篇    下一篇

高速率通信网络下时变系统的有限时域H∞控制

邹金鹏,姜顺,潘丰   

  1. 江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 出版日期:2019-10-15 发布日期:2019-10-14

Finite-Horizon H∞ Control for Time-Varying Systems Under High-Rate Communication Network

ZOU Jinpeng, JIANG Shun, PAN Feng   

  1. Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education), Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2019-10-15 Published:2019-10-14

摘要: 针对高速率通信网络和Round-Robin(RR)协议影响下网络化时变系统的有限时域[H∞]控制问题,考虑到系统中存在乘性噪声、随机时滞和量化效应,提出了一种基于观测器的有限时域[H∞]控制器的设计方法。利用李雅普诺夫稳定性理论和线性矩阵不等式(Linear Matrix Inequality,LMI)技术得到有限时域[H∞]控制器存在的充分条件。基于锥补线性化(Cone Complementarity Linearization,CCL)方法通过求解一组递归矩阵不等式得到观测器和控制器参数。所设计的控制器保证闭环网络化时变系统在给定的时域内稳定,且满足预定的[H∞]性能指标。数值仿真验证了所提方法的有效性。

关键词: 有限时域[H&infin, ]控制器, 网络化时变系统, 高速率通信网络, Round-Robin协议, 锥补线性化

Abstract: In this paper, a new observer-based [H∞] controller design method is developed for a class of time-varying networked control systems subject to high-rate communication network and Round-Robin(RR) protocol over a finite-horizon. The system under investigation involves multiplicative noise, stochastic time-delays and quantization effects. By applying Lyapunov stability theory and Linear Matrix Inequality(LMI) technique, a sufficient condition for the existence of the finite-horizon [H∞] controller is derived. The corresponding parameters of the observer and controller are obtained via resorting to a set of recursive matrix inequalities based on Cone Complementarity Linearization(CCL) method. The proposed controller can ensure both the stability and the prescribed [H∞] performance index of the closed-loop system over a given finite horizon. A simulation example is finally utilized to illustrate the effectiveness of the proposed controller design scheme.

Key words: finite-horizon [H∞] controller, time-varying networked control systems, high-rate communication network, Round-Robin protocol, cone complementarity linearization