计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (4): 92-98.DOI: 10.3778/j.issn.1002-8331.1811-0056
周康,万良,丁红卫
ZHOU Kang, WAN Liang, DING Hongwei
摘要:
目前,恶意域名被广泛应用于远控木马、钓鱼欺诈等网络攻击中,传统恶意域名检测方法存在长距离依赖性问题,容易忽略上下文信息并且数据维度过大,无法高效、准确地检测恶意域名。提出了一种自编码网络(Autoencoder Network,AN)降维和长短期记忆神经网络(Long Short-Term Memory network,LSTM)检测恶意域名的深度学习方法。利用实现包含语义的词向量表示,解决了传统方法导致的数据表示稀疏及维度灾难问题。由word2vec构建词向量作为LSTM的输入,利用Attention机制对LSTM输入与输出之间的相关性进行重要度排序,获取文本整体特征,最后将局部特征与整体特征进行特征融合,使用softmax分类器输出分类结果。实验结果表明,该方法在恶意域名检测上具有较好的表现,比传统检测恶意域名方法具有更高的检测率和实时性。