计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (4): 109-114.DOI: 10.3778/j.issn.1002-8331.1811-0035
王嘉良,罗健旭,刘斌,冯瑞,邹海东
WANG Jialiang, LUO Jianxu, LIU Bin, FENG Rui, ZOU Haidong
摘要:
糖尿病眼底病变(Diabetic Retinopathy,DR)是糖尿病患者常见的致盲疾病,可使用深度学习算法对患者的糖尿病眼底图片进行图像识别,实现对糖尿病眼底病变的辅助诊断。针对以往普通卷积神经网络只能进行分类和输入尺寸固定的问题,提出了基于目标检测的区域全卷积网络(Region-based Fully Convolutional Networks,R-FCN)算法,实现同时对任意尺寸输入的糖尿病眼底图片的分类和病变区域检测。针对原始R-FCN算法对小目标(极小的出血点和血管瘤)检测困难的问题,对R-FCN算法做了一定的改进,加入特征金字塔网络(Feature Pyramid Networks,FPN)结构,升级主干网络,修改区域建议网络(Region Proposal Network,RPN)。实现结果表明,改进后的R-FCN算法能以很高的正确率实现对糖尿病眼底图片的五级分类(健康、轻度、中度、重度、增殖)和病变区域检测(血管瘤、眼底出血、玻璃体出血)。