计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (20): 73-79.DOI: 10.3778/j.issn.1002-8331.1808-0246
景泓斐,张琨,蔡冰,余龙华
JING Hongfei, ZHANG Kun, CAI Bing, YU Longhua
摘要: CC(Challenge Collapsar)攻击通过模拟用户正常访问页面的行为,利用代理服务器或僵尸主机向服务器发送大量http请求,造成服务器资源耗尽,实现应用层DDoS。目前,对于CC攻击的检测已经取得了一些进展,但由于CC攻击模拟用户正常访问页面,与正常网页访问特征较为相似,导致攻击识别较为困难,且误报率较高。根据CC攻击的特点,结合包速率、URL信息熵、URL条件熵三种有效特征,提出一种基于误差逆向传播(Back Propagation,BP)神经网络的CC攻击检测算法。在真实网络环境中的实验结果证明,该模型对中、小型网站能准确地识别正常流量与CC攻击流量,对大型网站也有较为准确的检测结果。