计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (22): 150-155.DOI: 10.3778/j.issn.1002-8331.1707-0505
刘文培1,李凤莲1,张雪英1,田玉楚1,2
LIU Wenpei1, LI Fenglian1, ZHANG Xueying1, TIAN Yuchu1,2
摘要: 人脸识别技术可应用于各监控和安保领域,它涉及特征提取、识别模型等关键技术。其中特征提取方法直接影响识别效果,目前所用的特征提取方法存在特征表达不全面、计算复杂度高等问题。据此,提出一种基于WPD-HOG金字塔的人脸特征提取方法,该方法结合小波包分解(Wavelet Packet Decomposition,WPD)、图像金字塔以及方向梯度直方图(Histograms of Oriented Gradients,HOG)对人脸图像特征进行有效表征,最终将WPD-HOG金字塔特征通过SVM分类器进行分类。通过在ORL人脸库上进行实验,与四种对比方法HOG、HOG金字塔、FWPD-HOG以及FWPD-HOG金字塔进行比较,实验结果表明,WPD-HOG金字塔特征提取方法的识别率要高于对比方法,且在噪声方面具有较好的鲁棒性。