计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (20): 208-212.DOI: 10.3778/j.issn.1002-8331.1707-0031
王娜娜1,李晓旭1,2,曹 洁1
WANG Nana1, LI Xiaoxu1,2, CAO Jie1
摘要: 规则网格是视觉词袋模型中常用的图像检测方法,该方法抽取图像所有区块,获得背景区块和目标区块完整的图像信息。事实上,抽取的背景区块信息对类别的判定往往会有一定的混淆作用。以“摩托车”类和“小汽车”类的图像为例,这两类图像背景特征相似,大多都是道路,一般的分类方法很可能将它们分为相同类别。可见,背景信息会干扰图像分类结果。因此,提出一种提取目标区域词袋特征的图像分类方法。利用图像分割去除背景信息提取目标区域;对目标区域构建视觉词袋模型;使用SVM分类器对图像进行分类。PASCAL VOC2006及PASCAL VOC2010数据集上的实验结果表明,提取目标区域词袋特征的图像分类方法具有较好的分类性能。