计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (8): 85-90.DOI: 10.3778/j.issn.1002-8331.1612-0040
李 丹,凌 捷
LI Dan, LING Jie
摘要: 针对链接攻击导致的隐私泄露问题,以及为了尽可能减少匿名保护时产生的信息损失,提高发布数据集的可用性,提出一种面向个体的基于变长聚类的个性化匿名保护方法。该方法充分考虑记录权重值对聚类簇中心结果的影响,以提高数据的可用性,并对敏感属性值进行分级处理,将敏感属性值分成三个等级类,响应不同个体的保护需求。理论分析和实验结果表明,该方法能满足敏感属性个性化保护需求,同时可有效地降低信息损失,效率较高,生成的匿名数据集具有较好的可用性。