计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (8): 265-270.DOI: 10.3778/j.issn.1002-8331.1611-0035
• 工程与应用 • 上一篇
夏洋洋,刘 渊,黄亚东
XIA Yangyang, LIU Yuan, HUANG Yadong
摘要: 进行社区发现时,首先从某一节点开始进行随机行走,计算两个节点之间的对称社会距离,并用此距离来分析两个用户节点之间的相关性。社交网络中存在着关系不均匀的现象,有些个体之间关系非常稠密,而有些却异常稀疏,由此构成的虚拟社区需要用特定的社区发现技术进行挖掘。前人提出过利用可能性C均值聚类算法(PCM)和处理好的社会距离进行社区发现,但通过虚拟社区算法评价的准确度指标发现,对于数据量大,数据粘性强的数据,其聚类效果并不理想。而聚类中心的好坏直接决定着聚类性能的好与坏,因此利用类中心约束方法对PCM算法进行改进,得到的新型聚类算法更加适用于真实网络数据集。实验针对真实数据集,利用准确度指标进行了验证。