计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (5): 24-27.DOI: 10.3778/j.issn.1002-8331.1608-0356

• 热点与综述 • 上一篇    下一篇

两类完美的门限可变多秘密共享方案

张本慧1,唐元生2   

  1. 1.淮北师范大学 数学科学学院,安徽 淮北  235000
    2.扬州大学 数学科学学院,江苏 扬州  225002
  • 出版日期:2017-03-01 发布日期:2017-03-03

Two perfect threshold changeable multi-secret sharing schemes

ZHANG Benhui1, TANG Yuansheng2   

  1. 1. School of Mathematical Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
    2. School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, China
  • Online:2017-03-01 Published:2017-03-03

摘要: [t→t,n]门限可变方案研究如何将门限[t]改变为[t>t]以增加攻击者攻击方案的难度。基于拉格朗日插值多项式提出两类完美的门限可变多秘密共享方案:[t→t+1,n]门限可变方案[Π,Π]、[t→t+v-1,n]门限可变方案[Π,Π],并证明[Π]是[t-1,t+1,n]ramp秘密共享方案,[Π]是最优[t-1,t+v-1,n]ramp秘密共享方案,[Π,Π]是最优[t→t+v-1,n]门限可变方案。

关键词: 拉格朗日插值多项式, 多秘密共享, ramp秘密共享, 门限可变秘密共享

Abstract: The threshold [t] can be changed into [t>t] in [t→t,n] threshold changeable schemes, which can increase the difficulty for attackers to attack the schemes. Based on Lagrange interpolation polynomial, two perfect threshold changeable multi-secret sharing schemes: [t→t+1,n] threshold changeable scheme [Π,Π] and [t→t+v-1,n] threshold changeable scheme [Π,Π] are proposed. It is shown that [Π] is a [t-1,t+1,n] ramp secret sharing scheme, [Π] is an optimal [t-1,t+v-1,n] ramp secret sharing scheme and [Π,Π] is an optimal [t→t+v-1,n] threshold changeable scheme.

Key words: Lagrange interpolation polynomial, multi-secret sharing, ramp secret sharing, threshold changeable secret sharing