计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (24): 154-165.DOI: 10.3778/j.issn.1002-8331.2409-0217

• 模式识别与人工智能 • 上一篇    下一篇

多视图融合的部分多标签学习

杨中柳,殷俊+   

  1. 上海海事大学 信息工程学院,上海 201306
  • 出版日期:2025-12-15 发布日期:2025-12-15

Partial Multi-Label Learning Based on Multi-View Fusion

YANG Zhongliu, YIN Jun+   

  1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
  • Online:2025-12-15 Published:2025-12-15

摘要: 部分多标签学习(partial multi-label learning,PML)旨在训练实例的标签集中同时处理真实标签和噪声标签。当前大多数PML只考虑单视图场景,却忽略了现实中多视图场景的情况。虽然部分研究利用了多视图特征信息,但多依赖于获取多视图的子空间,对多视图特征信息的学习不够充分。针对以上挑战,提出了一种新颖的多视图融合的PML预测模型PMLMF(partial multi-label learning based on multi-view fusion)。利用矩阵非负分解获得共享子空间,以捕获多视图的共享信息,并将其与原始的多视图数据集相融合,构建新的多视图数据集。利用低秩表示获得标签相关性系数矩阵,从而有效去除噪声并恢复相关标签。将模型推广到非线性版本,以有效地处理线性不可分割的问题。在7个多视图部分多标签数据集中进行了大量的实验,充分验证了该方法的有效性。

关键词: 部分多标签学习, 多视图融合, 标签相关性, 非线性

Abstract: Partial multi-label learning (PML) aims to process both real and noisy labels in the label set of training examples. Most current PMLs only consider single-view scenarios while ignoring the reality of multi-view scenarios. Although some studies have utilized multi-view feature information, they mostly rely on acquiring multi-view subspaces, and the learning of multi-view feature information is not sufficient. To address the above challenges, this paper proposes a novel PML prediction model PMLMF (partial multi-label learning based on multi-view fusion). Firstly, matrix non-negative decomposition is utilized to obtain the shared subspace in order to capture the shared information of multi-views, and it is fused with the original multi-view dataset to construct a new multi-view dataset. Secondly, the label correlation coefficient matrix is obtained using the low-rank representation so as to effectively remove the noise and recover the relevant labels. Finally, the model is generalized to a nonlinear version to effectively deal with the linear inseparable problem. A large number of experiments are conducted on seven multi-view partially multi-labeled datasets to fully validate the effectiveness of the method.

Key words: partial multi-label learning, multi-view fusion, label correlation, nonlinear