
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (24): 40-67.DOI: 10.3778/j.issn.1002-8331.2501-0440
胡志远,高锦涛+
出版日期:2025-12-15
发布日期:2025-12-15
HU Zhiyuan, GAO Jintao+
Online:2025-12-15
Published:2025-12-15
摘要: 因果发现技术在医学、生物学、经济学、社会科学等领域有着广泛应用,能够揭示变量之间的因果关系,进而提升预测结果的可解释性。因果发现是指从数据中识别变量之间因果关系的过程,包括发现变量之间是否存在因果关系,同时还涉及理解这种关系的方向和强度。随着大数据技术的发展,数据驱动的方法逐渐成为因果发现的重要手段,它通过从大量数据中自动提取潜在的因果信息,有助于应对传统方法的局限性。数据驱动的因果发现能够有效利用高维数据,突破因果分析中对数据质量和独立性假设的依赖。目前,因果发现面临如何有效利用高维数据、精确控制混杂变量以及处理变量间的复杂交互等挑战。传统因果发现方法基于条件独立性测试,严重依赖数据质量,并且面对高维数据表现不佳。机器学习技术大大推动了因果发现技术的发展,比如高效的数据处理与分析、不确定性估计与可信度分析等。综述了目前具有代表性的因果发现的进展:介绍了传统因果发现中常用的方法,探究其核心过程存在的问题;总结了当前统计学习领域中流行的因果发现方法,并详细阐述这些方法的核心思想,在同一基准数据集上对其性能和适用数据类型场景进行比较,主要目的是为数据科学与统计学习领域的科研人员提供更有价值的参考;对因果发现未来的研究方向进行了总结。
胡志远, 高锦涛. 因果发现技术研究综述[J]. 计算机工程与应用, 2025, 61(24): 40-67.
HU Zhiyuan, GAO Jintao. Review of Research on Causal Discovery Techniques[J]. Computer Engineering and Applications, 2025, 61(24): 40-67.
| [1] NEAL B. Introduction to causal inference[J]. Course Lecture Notes (draft), 2020, 132. [2] PEARL J. Causality: models, reasoning, and inference[M]. Cambridge: Cambridge University Press, 2000. [3] KOLLER D, FRIEDMAN N. Probabilistic graphical models: principles and techniques[M]. Cambridge, MA, USA: MIT Press, 2009. [4] ROBINSON J. Counting labeled acyclic digraphs[M]//New directions in the theory of graphs. New York: Academic Press, 1971: 239-273. [5] MA H, JM R. Causal inference[M]. Boca Raton: Chapman & Hall/CRC, 2020. [6] ROSENBAUM P R, RUBIN D B. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1): 41-55. [7] SPIRTES P, GLYMOUR C. An algorithm for fast recovery of sparse causal graphs[J]. Social Science Computer Review, 1991, 9(1): 62-72. [8] GLYMOUR C, ZHANG K, SPIRTES P. Review of causal discovery methods based on graphical models[J]. Frontiers in Genetics, 2019, 10: 524. [9] NANDY P, HAUSER A, MAATHUIS M H. High-dimensional consistency in score-based and hybrid structure learning[J]. The Annals of Statistics, 2018, 46(6A): 3151-3183. [10] SPIRTES P, GLYMOUR C, SCHEINES R. Causation, prediction and search[M]. Cambridge, MA, USA: MIT Press, 2001. [11] LE T D, HOANG T, LI J Y, et al. A fast PC algorithm for high dimensional causal discovery with multi-core PCs[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(5): 1483-1495. [12] LI C, FAN X D. On nonparametric conditional independence tests for continuous variables[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2020, 12(3): e1489. [13] TSAGRIS M, BORBOUDAKIS G, LAGANI V, et al. Constraint-based causal discovery with mixed data[J]. International Journal of Data Science and Analytics, 2018, 6(1): 19-30. [14] ANDREWS B, RAMSEY J, COOPER G F. Learning high-dimensional directed acyclic graphs with mixed data-types[J]. Proceedings of Machine Learning Research, 2019, 104: 4-21. [15] STROBL E V, ZHANG K, VISWESWARAN S. Approximate kernel-based conditional independence tests for fast non-parametric causal discovery[J]. Journal of Causal Inference, 2019, 7: 20180017. [16] MEEK C. Causal inference and causal explanation with background knowledge[J]. arXiv:1302.4972, 2013. [17] PERKOVI? E, KALISCH M, MAATHUIS M H. Interpre-ting and using CPDAGs with background knowledge[J]. arXiv:1707.02171, 2017. [18] LEURIDAN B. Causal discovery and the problem of ignorance. an adaptive logic approach[J]. Journal of Applied Logic, 2009, 7(2): 188-205. [19] CHICKERING D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2003, 3: 507-554. [20] ALONSO-BARBA J I, DELAOSSA L, GáMEZ J A, et al. Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes[J]. International Journal of Approximate Reasoning, 2013, 54(4): 429-451. [21] LIU X H, GAO X G, RU X X, et al. Improving greedy local search methods by switching the search space[J]. Applied Intelligence, 2023, 53(19): 22143-22160. [22] CAMPS-VALLS G, GERHARDUS A, NINAD U, et al. Discovering causal relations and equations from data[J]. Physics Reports, 2023, 1044: 1-68. [23] PENG F Y, WANG R M, HU Y Y, et al. Feature fusion-based text information mining method for natural scenes[J]. Demonstratio Mathematica, 2023, 56: 20220255. [24] HEINRICH C J, MAFFIOLI A, GONZALO V A. Primer for applying propensity-score matching[J]. SPD Working Papers, 2010. DOI: info:doi/10.1346/CCMN.2011.0590204. [25] AUSTIN P C. Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: a systematic review and suggestions for improvement[J]. The Journal of Thoracic and Cardiovascular Surgery, 2007, 134(5): 1128-1135. [26] NOGUEIRA A R, PUGNANA A, RUGGIERI S, et al. Methods and tools for causal discovery and causal inference[J]. WIREs Data Mining and Knowledge Discovery, 2022, 12(2): e1449. [27] SOBEL M E. Causal inference in the social sciences[J]. Journal of the American Statistical Association, 2000, 95: 647-651. [28] LING Z L, LI B, ZHANG Y W, et al. Causal discovery using weight-based conditional independence test[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 19(1): 1-24. [29] MA P C, JI Z L, YAO P S, et al. Enabling runtime verification of causal discovery algorithms with automated conditional independence reasoning[C]//Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering. Piscataway: IEEE, 2024: 340-352. [30] CAI Z R, LI R Z, ZHANG Y W. A distribution free conditional independence test with applications to causal discovery[J]. Journal of Machine Learning Research, 2022, 23(85): 1-41. [31] HOYER P O, JANZING D, MOOIJ J, et al. Nonlinear causal discovery with additive noise models[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems. New York: ACM, 2008: 689-696. [32] RUNGE J, GERHARDUS A, VARANDO G, et al. Causal inference for time series[J]. Nature Reviews Earth & Environment, 2023, 4(7): 487-505. [33] JANZING D, STEUDEL B. Justifying additive noise model-based causal discovery via algorithmic information theory[J]. Open Systems & Information Dynamics, 2010, 17(2): 189-212. [34] PARIDA P K, MARWALA T, CHAKRAVERTY S. A multivariate additive noise model for complete causal discovery[J]. Neural Networks, 2018, 103: 44-54. [35] KAP B, ALEKSANDROVA M, ENGEL T. The effect of noise level on the accuracy of causal discovery methods with additive noise models[C]//Proceedings of the 33rd Benelux Conference on Artificial Intelligence and Machine Learning. Cham: Springer, 2022: 120-140. [36] GAO E D, NG I, GONG M M, et al. MissDAG: causal discovery in the presence of missing data with continuous additive noise models[C]//Advances in Neural Information Processing Systems, 2022: 5024-5038. [37] MONTAGNA F, NOCETI N, ROSASCO L, et al. Causal discovery with score matching on additive models with arbitrary noise[J]. arXiv:2304.03265, 2023. [38] QIAO J, CAI R C, ZHANG K, et al. Causal discovery with confounding cascade nonlinear additive noise models[J]. ACM Transactions on Intelligent Systems and Technology, 2021, 12(6): 1-28. [39] LIU L, TANG Y, ZHANG K X, et al. Causal learning for heterogeneous subgroups based on nonlinear causal kernel clustering[C]//Proceedings of the 2024 International Joint Conference on Neural Networks. Piscataway: IEEE, 2024: 1-8. [40] CHENG Y X, LI L L, XIAO T X, et al. CUTS+: high-dimensional causal discovery from irregular time-series[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 11525-11533. [41] REIZINGER P, SHARMA Y, BETHGE M, et al. Jacobian-based causal discovery with nonlinear ICA[J]. Transactions on Machine Learning Research, 2023: 258765693. [42] FONOLLOSA J A R. Conditional distribution variability measures for causality detection[M]//Cause effect pairs in machine learning. Cham: Springer International Publishing, 2019 : 339-347. [43] CHEN A, ZHOU Q. Causal discovery on dependent binary data[J]. arXiv:2412.20289, 2024. [44] LU C, WU Y, NDEZ-LOBATO J M, et al. Invariant causal representation learning for out-of-distribution generalization[C]//Proceedings of the 10th International Conference on Learning Representations, 2021. [45] IMMER A, SCHULTHEISS C, VOGT J E, et al. On the identifiability and estimation of causal location-scale noise models[C]//Proceedings of the 40th International Conference on Machine Learning. New York: ACM, 2023: 14316-14332. [46] LOPEZ-PAZ D, MUANDET K, RECHT B. The randomized causation coefficient[J]. Journal of Machine Learning Res-earch, 2015, 16(1): 2901-2907. [47] SOUBIRAN F, MILITZER B. The properties of heavy elements in giant planet envelopes[J]. The Astrophysical Journal, 2016, 829(1): 14. [48] LOPEZ-PAZ D, NISHIHARA R, CHINTALA S, et al. Discovering causal signals in images[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 58-66. [49] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference Computer Vision. Cham: Springer, 2014: 818-833. [50] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. [51] OQUAB M, BOTTOU L, LAPTEV I, et al. Is object localization for free? weakly-supervised learning with convolutional neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 685-694. [52] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs[J]. arXiv:1412.6856, 2014. [53] SCHOELKOPF B, JANZING D, PETERS J, et al. On causal and anticausal learning[J]. arXiv:1206.6471, 2012. [54] PICKUP L C, PAN Z, WEI D L, et al. Seeing the arrow of time[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 2043-2050. [55] LEBEDA K, HADFIELD S, BOWDEN R. Exploring causal relationships in visual object tracking[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2016: 3065-3073. [56] FIRE A, ZHU S C. Using causal induction in humans to learn and infer causality from video[C]//Proceedings of the Annual Meeting of the Cognitive Science Society, 2013. [57] FIRE A, ZHU S C. Learning perceptual causality from video[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 7(2): 1-22. [58] CHALUPKA K, PERONA P, EBERHARDT F. Visual causal feature learning[J]. arXiv:1412.2309, 2014. [59] XIA K M, LEE K Z, BENGIO Y, et al. The causal-neural connection: expressiveness, learnability, and inference[C]//Advances in Neural Information Processing Systems, 2021: 10823-10836. [60] LAGEMANN K, LAGEMANN C, TASCHLER B, et al. Deep learning of causal structures in high dimensions under data limitations[J]. Nature Machine Intelligence, 2023, 5(11): 1306-1316. [61] IRRIBARRA N, MICHELL K, BERMEO C, et al. A multi-head attention neural network with non-linear correlation approach for time series causal discovery[J]. Applied Soft Computing, 2024, 165: 112062. [62] BL?BAUM P, JANZING D, WASHIO T, et al. Cause-effect inference by comparing regression errors[C]//Proceedings of the International Conference on Artificial Intelligence and Statistics, 2018: 900-909. [63] KANO Y, SHIMIZU S. Causal inference using nonnormality[C]//Proceedings of the International Symposium on Science of Modeling, the 30th Anniversary of the Information Criterion, 2003: 261-270. [64] ZHANG K, HYV?RINEN A. On the identifiability of the post-nonlinear causal model[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009: 647-655. [65] JANZING D, SUN X H, SCHOELKOPF B. Distinguishing cause and effect via second order exponential models[J]. arXiv:0910.5561, 2009. [66] PETERS J, JANZING D, SCHOLKOPF B. Causal inference on discrete data using additive noise models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2436-2450. [67] DANIU?IS P, JANZING D, MOOIJ J, et al. Inferring deterministic causal relations[C]//Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, 2010: 143-150. [68] SGOURITSA E, JANZING D, HENNIG P, et al. Inference of cause and effect with unsupervised inverse regression[C]//Proceedings of the UAI 2015 Conference on Advances in Causal Inference. New York: ACM, 2015: 89. [69] MOOIJ J M, PETERS J, JANZING D, et al. Distinguishing cause from effect using observational data: methods and benchmarks[J]. arXiv:1412.3773, 2014. [70] ZENG Y, SHIMIZU S, MATSUI H, et al. Causal discovery for linear mixed data[C]//Proceedings of the Conference on Causal Learning and Reasonin, 2022: 994-1009. [71] TSAMARDINOS I, ALIFERIS C F, STATNIKOV A R. Algorithms for large scale Markov blanket discovery[C]//Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference, 2003: 376-381. [72] YUAN H, YU H Y, GUI S R, et al. Explainability in graph neural networks: a taxonomic survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5782-5799. [73] NEAPOLITAN R E. Probabilistic reasoning in expert systems: theory and algorithms[M]. New York, NY: John Wiley & Sons, Inc, 2012. [74] YARAMAKALA S, MARGARITIS D. Speculative Markov blanket discovery for optimal feature selection[C]//Proceedings of the Fifth IEEE International Conference on Data Mining. Piscataway: IEEE, 2006. [75] ELREFAEY A, PAN R. MEC-IP: efficient discovery of Markov equivalent classes via integer programming[J]. arXiv:2410.18147, 2024. [76] ANNADANI Y, PAWLOWSKI N, JENNINGS J, et al. BayesDAG: gradient-based posterior inference for causal discovery[J]. arXiv:2307.13917, 2023. [77] GUPTA S, CHILDERS D, LIPTON Z C. Local causal discovery for estimating causal effects[J]. arXiv:2302.08070, 2023. [78] TSAMARDINOS I, ALIFERIS C F, STATNIKOV A. Time and sample efficient discovery of Markov blankets and direct causal relations[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2003: 673-678. [79] WANG X K, JIANG S Q, LI X H, et al. Causal discovery and fault diagnosis based on mixed data types for system reliability modeling[J]. Complex & Intelligent Systems, 2025, 11(1): 124. [80] BüHLMANN P, PETERS J, ERNEST J. CAM: causal additive models, high-dimensional order search and penalized regression[J]. The Annals of Statistics, 2014, 42(6): 2526-2556. [81] KUCHLING F, FRISTON K, GEORGIEV G, et al. Morphogenesis as Bayesian inference: a variational approach to pattern formation and control in complex biological systems[J]. Physics of Life Reviews, 2020, 33: 88-108. [82] PETERS J, MOOIJ J, JANZING D, et al. Causal discovery with continuous additive noise models [J]. Journal of Mac-hine Learning Research, 2014, 15: 2009-2053. [83] NOWZOHOUR C, BüHLMANN P. Score-based causal lear-ning in additive noise models[J]. Statistics, 2016, 50(3): 471-485. [84] VOORMAN A, SHOJAIE A, WITTEN D. Graph estimation with joint additive models[J]. Biometrika, 2014, 101(1): 85-101. [85] MEINSHAUSEN N, BüHLMANN P. High-dimensional graphs and variable selection with the Lasso[J]. The Annals of Statistics, 2006, 34(3): 1436-1462. [86] TIBSHIRANI R. Regression shrinkage and selection via the Lasso: a retrospective[J]. Journal of the Royal Statistical Society Series B(Statistical Methodology), 2011, 73(3): 273-282. [87] WAINWRIGHT M J. Sharp thresholds for high-dimensional and noisy sparsity recovery using ?1-constrained quadratic programming (Lasso)[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2183-2202. [88] YUAN M, LIN Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society Series B (Statistical Methodology), 2006, 68(1): 49-67. [89] ZHAO P, YU B. On model selection consistency of Lasso[J]. Journal of Machine Learning Research, 2006, 7: 2541-2563. [90] MASINI R P, MEDEIROS M C, MENDES E F. Machine learning advances for time series forecasting[J]. Journal of Economic Surveys, 2023, 37(1): 76-111. [91] MORZYWOLEK P, DECRUYENAERE J, VANSTEELANDT S. On weighted orthogonal learners for heterogeneous treatment effects[J]. arXiv:2303.12687, 2023. [92] GOUDET O, KALAINATHAN D, CAILLOU P, et al. Learning functional causal models with generative neural networks[M]//Explainable and interpretable models in computer vision and machine learning. Cham: Springer International Publishing, 2018: 39-80. [93] JI P, YE J C, MU Y, et al. Signal propagation in complex networks[J]. Physics Reports, 2023, 1017: 1-96. [94] HUANG Y, SUN L, WANG H, et al. TrustLLM: trustworthiness in large language models[C]//Proceedings of the International Conference on Machine Learning, 2024: 20166-20270. [95] TSAMARDINOS I, BROWN L E, ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31-78. [96] STEGLE O, JANZING D, ZHANG K, et al. Probabilistic latent variable models for distinguishing between cause and effect[C]//Advances in Neural Information Processing Systems (NIPS), 2010: 1687-1695. [97] DANIUSIS P, JANZING D, MOOIJ J, et al. Inferring deterministic causal relations[J]. arXiv:1203.3475, 2012. [98] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. [99] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems (NIPS), 2014: 2672-2680. [100] YANG D Z, YU G X, WANG J, et al. Reinforcement causal structure learning on order graph[C]//Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2023: 10737-10744. [101] XIA K, BAREINBOIM E. Neural causal abstractions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 20585-20595. [102] MéNDEZ-MOLINA A, MORALES E F, SUCAR L E. CARL: a synergistic framework for causal reinforcement learning[J]. IEEE Access, 2023, 11: 126462-126481. [103] HASAN U, GANI M O. KCRL: a prior knowledge based causal discovery framework with reinforcement learning[C]//Proceedings of the Machine Learning for Healthcare Conference, 2022: 691-714. [104] BERREVOETS J, KACPRZYK K, QIAN Z Z, et al. Causal deep learning[J]. arXiv:2303.02186, 2023. [105] HAUSER A, BüHLMANN P. Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs[J]. The Journal of Machine Learning Research, 2012, 13(1): 2409-2464. [106] VERMA T S, PEARL J. Equivalence and synthesis of causal models[C]//Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, 1990: 255-270. [107] ANDERSSON S A, MADIGAN D, PERLMAN M D. A characterization of Markov equivalence classes for acyclic digraphs[J]. The Annals of Statistics, 1997, 25(2): 505-541. [108] MEEK C. Graphical models: selecting causal and statistical models[D]. Carnegie Mellon University, 1997. [109] UHLER C, WELCH R, ZHANG J Q. Identifiability guarantees for causal disentanglement from purely observational data[C]//Advances in Neural Information Processing Systems, 2024: 102796-102821. [110] BROWN L E, TSAMARDINOS I, ALIFERIS C F. A comparison of novel and state-of-the-art polynomial Bayesian network learning algorithms[C]//Proceedings of the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, 2005: 739-745. [111] YU K, GUO X J, LIU L, et al. Causality-based feature selection: methods and evaluations[J]. ACM Computing Surveys, 2020, 53(5): 1-36. [112] COOPER G F, YOO C. Causal discovery from a mixture of experimental and observational data[C]//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. New York: ACM, 1999: 116-125. [113] EATON D, MURPHY K. Exact Bayesian structure learning from uncertain interventions [J]. Artificial Intelligence and Statistics, 2007, 2: 107-114. [114] ROBINSON R W. Counting labeled acyclic digraphs[M]//New directions in the theory of graphs. New York, USA: Academic Press, 1973: 239-273. [115] HE Y, GENG Z. Active learning of causal networks with intervention experiments and optimal designs[J]. Journal of Machine Learning Research, 2008, 9: 2523-2547. [116] TONG S, KOLLER D. Active learning for structure in Baye-sian networks[C]//Proceedings of the International Joint Conference on Artificial Intelligence. New York: ACM, 2001: 863-869. [117] EBERHARDT F. Almost optimal intervention sets for causal discovery[C]//Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. New York: ACM, 2008: 161-168. [118] EBERHARDT F, GLYMOUR C, SCHEINES R. On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables[J]. arXiv:1207.1389, 2012. [119] EBERHARDT F, HOYER P O, SCHEINES R. Combining experiments to discover linear cyclic models with latent variables[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010: 185-192. [120] GAO H Y, SUN Z X, YANG H, et al. Policy-based Bayesian active causal discovery with deep reinforcement learning[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 839-850. [121] SCHERRER N, BILANIUK O, ANNADANI Y, et al. Lea-rning neural causal models with active interventions[J]. arXiv:2109.02429, 2021. [122] ZHANG J Q, CAMMARATA L, SQUIRES C, et al. Active learning for optimal intervention design in causal models[J]. Nature Machine Intelligence, 2023, 5(10): 1066-1075. [123] KALAINATHAN D, GOUDET O, GUYON I, et al. Structural agnostic modeling: adversarial learning of causal graphs[J]. Journal of Machine Learning Research, 2022, 23(1): 9831-9892. [124] DELEU T, GóIS A, EMEZUE C, et al. Bayesian structure learning with generative 140 flow networks[C]//Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2022: 518-528. [125] KUMAR S, YING J X, DE M CARDOSO J V, et al. A unified framework for structured graph learning via spectral constraints[J]. Journal of Machine Learning Research, 2020, 21(1): 785-844. [126] PAN Y C, ZHANG Y F, JIANG X R, et al. EffCause: discover dynamic causal relationships efficiently from time-series[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(5): 1-21. [127] SCH?LKOPF B, LOCATELLO F, BAUER S, et al. Toward causal representation learning[J]. Proceedings of the IEEE, 2021, 109(5): 612-634. [128] GALKIN F, MAMOSHINA P, KOCHETOV K, et al. DeepMAge: a methylation aging clock developed with deep learning[J]. Aging and Disease, 2021, 12(5): 1252-1262. [129] CAO Y H, LI S Y, LIU Y X, et al. A comprehensive survey of AI-generated content (AIGC): a history of generative AI from GAN to ChatGPT[J]. arXiv:2303.04226, 2023. [130] BROUILLARD P, LACHAPELLE S, LACOSTE A, et al. Differentiable causal discovery from interventional data[J]. arXiv:2007.01754, 2020. [131] BROUILLARD P, TASLAKIAN P, LACOSTE A, et al. Typing assumptions improve identification in causal discovery[J]. arXiv:2107.10703, 2021. [132] KE N R, CHIAPPA S, WANG J, et al. Learning to induce causal structure[J]. arXiv:2204.04875, 2022. [133] KE N R, BILANIUK O, GOYAL A, et al. Neural causal structure discovery from interventions[J]. Transactions on Machine Learning Research, 2023. [134] SHIMIZU S, HOYER P O, HYV?RINEN A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7: 2003-2030. [135] HYV?RINEN A, SMITH S M. Pairwise likelihood ratios for estimation of non-Gaussian structural equations with latent variables [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 873-886. [136] HYV?RINEN A, SUGIYAMA M, YANG Q. Pairwise measures of causal direction in linear non-Gaussian acyclic models[C]//Proceedings the 2nd Asian Conference on Machine Learning, 2010: 1-16. [137] TASHIRO T, SHIMIZU S, HYV?RINEN A, et al. ParceLiN-GAM: a causal ordering method robust against latent confounders[J]. Neural Computation, 2014, 26(1): 57-83. [138] XU L L, FAN T T, WU X, et al. A pooling-LiNGAM algorithm for effective connectivity analysis of fMRI data[J]. Frontiers in Computational Neuroscience, 2014, 8: 125. [139] HOYER P O, SHIMIZU S, KERMINEN A J, et al. Estimation of causal effects using linear non-Gaussian causal models with hidden variables[J]. International Journal of Approximate Reasoning, 2008, 49(2): 362-378. [140] ZENG Y, HAO Z F, CAI R C, et al. A causal discovery algorithm based on the prior selection of leaf nodes[J]. Neural Networks, 2020, 124: 130-145. [141] HERNáNDEZ M A D L S, SUCAR SUCCAR L E, ORIHUELA-ESPINA F. Causal discovery of non-stationary causal graphical models: applications in brain effective connectivity[R]. Santa María de Tonantzintla, Puebla: Coo-rdinación de Ciencias Computacionales, 2024. [142] SHAHBAZINIA A, SALEHKALEYBAR S, HASHEMI M. ParaLiNGAM: parallel causal structure learning for linear non-Gaussian acyclic models[J]. Journal of Parallel and Distributed Computing, 2023, 176: 114-127. [143] ZHENG X, ARAGAM B, RAVIKUMAR P, et al. DAGs with no tears: continuous optimization for structure learning[C]//Advances in Neural Information Processing Systems, 2018: 9492-9503. [144] OTT S, MIYANO S. Finding optimal gene networks using biological constraints[J]. Genome Informatics, 2003, 14: 124-133. [145] BAUER A, TRAPP S, STENGER M, et al. Comprehensive exploration of synthetic data generation: a survey[J]. arXiv:2401.02524, 2024. [146] WU L F, CUI P, PEI J, et al. Graph neural networks: foundation, frontiers and applications[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 5831-5832. [147] DENG C, BELLO K, ARAGAM B, et al. Optimizing NOTEARS objectives via topological swaps[C]//Proceedings of the 40th International Conference on Machine Learning. New York: ACM, 2023: 7563-7595. [148] BRIGANTI G, SCUTARI M, MCNALLY R J. A tutorial on Bayesian networks for psychopathology researchers[J]. Psychological Methods, 2023, 28(4): 947-961. [149] YU Y, GAO T, YIN N Y, et al. DAGs with no curl: an efficient DAG structure learning approach[J]. arXiv:2106.07197, 2021. [150] BELLO K, ARAGAM B, RAVIKUMAR P. DAGMA: lear-ning DAGs via M-matrices and a log-determinant acyclicity characterization[J]. arXiv:2209.08037, 2022. [151] SCANAGATTA M, DE CAMPOS C P, CORANI G, et al. Learning Bayesian networks with thousands of variables[C]//Proceedings of the 29th International Conference on Neural Information Processing Systems. New York: ACM, 2015: 1864-1872. [152] SCANAGATTA M, CORANI G, DE CAMPOS C P, et al. Learning treewidth-bounded Bayesian networks with thousands of variables[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 1470-1478. [153] BOCCALETTI S, DE LELLIS P, DEL GENIO C I, et al. The structure and dynamics of networks with higher order interactions[J]. Physics Reports, 2023, 1018: 1-64. [154] ZHENG X, DAN C, ARAGAM B, et al. Learning sparse nonparametric dags[C]//Proceedings of the International Conference on Artificial Intelligence and Statistics, 2020: 3414-3425. [155] FANG Z Y, ZHU S Y, ZHANG J J, et al. On low-rank directed acyclic graphs and causal structure learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4924-4937. [156] HE Y, CUI P, SHEN Z Y, et al. DARING: differentiable causal discovery with residual independence[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 596-605. [157] DHIR A, SEDGWICK R, KORI A, et al. Continuous Bayesian model selection for multivariate causal discovery[J]. arXiv:2411.10154, 2024. [158] YU Y, CHEN J, GAO T, et al. DAG-GNN: DAG structure learning with graph neural networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 7154-7163. [159] MOHAN K, CHUNG M J, HAN S, et al. Structured learning of Gaussian graphical models[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: ACM, 2012: 620-628. [160] SAUTER A W M, BOTTEGHI N, ACAR E, et al. CORE: towards scalable and efficient causal discovery with reinforcement learning[J]. arXiv:2401.16974, 2024. [161] SAUTER A, ACAR E, FRAN?OIS-LAVET V. A meta-reinforcement learning algorithm for causal discovery[J]. arXiv:2207.08457, 2022. [162] MA P C, DING R, DAI H Y, et al. ML4S: learning causal skeleton from vicinal graphs[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 1213-1223. [163] DHIR A, ASHMAN M, REQUEIMA J, et al. A meta-learning approach to Bayesian causal discovery[J]. arXiv:2412.16577, 2024. [164] WANG X Q, DU Y L, ZHU S Y, et al. Ordering-based causal discovery with reinforcement learning[J]. arXiv:2105. 06631, 2021. [165] JIANG J C, SHEN R J, ZHAO C, et al. Causal discovery based on hierarchical reinforcement learning[J]. Expert Systems with Applications, 2025, 279: 127466. [166] FU X L, PAN Y, ZHANG L M. A causal-temporal graphic convolutional network (CT-GCN) approach for TBM load prediction in tunnel excavation[J]. Expert Systems with Applications, 2024, 238: 121977. [167] JIN Z J, LIU J R, LYU Z H, et al. Can large language models infer causation from correlation? [J]. arXiv:2306.05836, 2023. [168] PAWLOWSKI N, CASTRO D C, GLOCKER B. Deep structural causal models for tractable counterfactual inference[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 857-869. [169] VEITCH V, SRIDHAR D, BLEI D M. Adapting text embeddings for causal inference[C]//Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2019: 919-928. [170] GAO E D, CHEN J J, SHEN L, et al. FedDAG: federated DAG structure learning[J]. arXiv:2112.03555, 2021. [171] KARAGODIN N, POLYANSKIY Y, RIGOLLET P. Clustering in causal attention masking[J]. arXiv:2411.04990, 2024. [172] JIRALERSPONG T, CHEN X Y, MORE Y, et al. Efficient causal graph discovery using large language models[J]. arXiv:2402.01207, 2024. [173] BAN T, CHEN L, WANG X, et al. From query tools to causal architects: Harnessing large language models for advanced causal discovery from data[J]. arXiv:2306.16902, 2023. |
| [1] | 吴瑞琪, 周毅. 知识融入多源多任务学习的眼底图像分类方法[J]. 计算机工程与应用, 2025, 61(7): 255-266. |
| [2] | 魏佳妹, 袁书娟, 孔闪闪, 杨爱民, 赵晨颖. 轻梯度提升机算法的发展与应用[J]. 计算机工程与应用, 2025, 61(5): 32-42. |
| [3] | 赵婵婵, 吕飞, 石宝, 尉晓敏, 杨星辰, 岳效灿. 面向边缘智能的协同推理方法研究综述[J]. 计算机工程与应用, 2025, 61(3): 1-20. |
| [4] | 刘昭仪, 王士同. 基于分层和随机策略的鲁棒随机森林[J]. 计算机工程与应用, 2025, 61(21): 203-213. |
| [5] | 李子煜, 张金珠, 高青山. 基于模型和算法的量化投资方法股票预测研究综述[J]. 计算机工程与应用, 2025, 61(19): 1-11. |
| [6] | 徐放, 尹伊纯, 吴方君. 方面级情感分析研究综述[J]. 计算机工程与应用, 2025, 61(19): 60-73. |
| [7] | 方岢愿, 许珂维. LLMs与ML优势互补:政务回复质量检测及可解释的算法框架[J]. 计算机工程与应用, 2025, 61(16): 146-159. |
| [8] | 李道童, 李盛新, 王兵, 姚藩益, 芦飞, 艾山彬, 张炳会, 孙秀强, 王若琳. 服务器内存可靠性技术研究综述[J]. 计算机工程与应用, 2025, 61(15): 72-92. |
| [9] | 彭晏飞, 郭家隆, 黄瑾, 郑宏威, 王庚哲. 基于网络流量的挖矿币种识别方法研究[J]. 计算机工程与应用, 2025, 61(13): 200-207. |
| [10] | 万季玲, 曹利峰, 白金龙, 李金辉, 杜学绘. 面向区块链网络的异常检测方法综述[J]. 计算机工程与应用, 2025, 61(13): 78-99. |
| [11] | 黄施洋, 奚雪峰, 崔志明. 大模型时代下的汉语自然语言处理研究与探索[J]. 计算机工程与应用, 2025, 61(1): 80-97. |
| [12] | 裴文灿, 孙光伟, 黄金国, 徐丁辉, 刘竞. 田间即时鲜烟叶SPAD值预测和成熟度识别方法[J]. 计算机工程与应用, 2024, 60(8): 348-360. |
| [13] | 邢长征, 徐佳玉. LightGBM混合模型在乳腺癌诊断中的应用[J]. 计算机工程与应用, 2024, 60(6): 330-338. |
| [14] | 吴海涛, 蔡咏琦, 高建华. Bagging异构集成的代码异味检测与重构优先级划分[J]. 计算机工程与应用, 2024, 60(3): 138-147. |
| [15] | 宋程, 谢振平. 中文纠错任务为例的数据集增强质量评价方法[J]. 计算机工程与应用, 2024, 60(3): 331-339. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||