[1] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[2] 冯增喜, 李嘉乐, 葛珣, 等. 融合多策略改进鲸鱼优化算法及其应用[J/OL]. 计算机集成制造系统: 1-23[2024-11-12]. http://kns.cnki.net/kcms/detail/11.5946.tp.20230104.1215.014.html.
FENG Z X, LI J L, GE X, et al. Integrating multi strategy improved whale optimization algorithm and its application[J/OL]. Computer Integrated Manufacturing Systems: 1-23 [2024-11-12]. http://kns.cnki.net/kcms/detail/11.5946.tp. 20230104.1215.014.html.
[3] SALGOTRA R, SINGH U, SAHA S. On some improved versions of whale optimization algorithm[J]. Arabian Journal for Science and Engineering, 2019, 44(11): 9653-9691.
[4] DENG H, LIU L, FANG J, et al. A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm[J]. Mathematics and Computers in Simulation, 2023, 205: 794-817.
[5] 王永贵, 李鑫, 关连正. 求解高维优化问题的改进鲸鱼优化算法[J]. 计算机科学与探索, 2022, 16(12): 2890-2902.
WANG Y G, LI X, GUAN L Z. Improved whale optimization algorithm for solving high-dimensional optimization problems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2890-2902.
[6] WANG C, YANG C, HOU H P. Risk management in perishable food distribution operations: a distribution route selection model and whale optimization algorithm[J]. Industrial Management and Data Systems, 2019, 36(12): 291-311.
[7] KAUR G, ARORA S. Chaotic whale optimization algorithm[J]. Journal of Computational Design and Engineering, 2018, 5(3): 275-284.
[8] 朱杰, 付伟, 马宁, 等. 一种多种群进化和差分变异的鲸鱼优化算法[J]. 小型微型计算机系统, 2024, 45(11): 2618-2627.
ZHU J, FU W, MA N, et al. Whale optimization algorithm with multi-population evolution and differential mutation[J]. Journal of Chinese Computer Systems, 2024, 45(11): 2618-2627.
[9] 柴岩, 朱玉, 任生. 多策略协同的改进鲸鱼优化算法[J]. 计算机工程与科学, 2023, 45(7): 1308-1319.
CHAI Y, ZHU Y, REN S. An improved whale optimization algorithm based on multi-strategy coordination[J]. Computer Engineering and Science, 2023, 45(7): 1308-1319.
[10] YANG W, XIA K, FAN S, et al. A multi-strategy whale optimization algorithm and its application[J]. Engineering Applications of Artificial Intelligence, 2021, 108: 104558.
[11] CHAKRABORTY S, SAHA A K, CHAKRABORTY R, et al. An enhanced whale optimization algorithm for large scale optimization problems[J]. Knowledge-Based Systems, 2021, 233: 107543.
[12] WANG X, ZHAN L, ZHANG Y, et al. Environmental cold chain distribution center location model in the semiconductor supply chain: a hybrid arithmetic whale optimization algorithm[J]. Computers & Industrial Engineering, 2024, 187: 109773.
[13] HASHIM F A, HOUSSEIN E H, HUSSAIN K, et al. Honey badger algorithm: new metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2022, 192: 84-110.
[14] SINGH N, HACHIMI H. A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization[J]. Mathematical and Computational Applications, 2018, 23(1): 14.
[15] JADHAV N, GOMATHI N. WGC: hybridization of exponential grey wolf optimizer with whale optimization for data clustering[J]. Alexandria Engineering Journal, 2018, 57(3): 1569-1584.
[16] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
[17] BOZORGI M, YAZDANI S. IWOA: an improved whale optimization algorithm for optimization problems[J]. Journal of Computational Design and Engineering, 2019, 6(3): 243-259.
[18] STORN R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11: 341-359.
[19] 夏超, 欧阳平, 李明, 等. 基于混沌精英和Lévy飞行策略的鲸鱼优化算法[J]. 计算机技术与发展, 2024, 34(4): 180-186.
XIA C, OUYANG P, LI M, et al. Whale optimization algorithm based on chaotic elite and Lévy flight strategy[J]. Computer Technology and Development, 2024, 34(4): 180-186.
[20] 许德刚, 王再庆, 郭奕欣, 等. 鲸鱼优化算法研究综述 [J]. 计算机应用研究, 2023, 40(2): 328-336.
XU D G, WANG Z Q, GUO Y X, et al. Review of whale optimization algorithm[J]. Application Research of Computers, 2023, 40(2): 328-336.
[21] 陈俊, 何庆. 基于余弦相似度的改进蝴蝶优化算法[J]. 计算机应用, 2021, 41(9): 2668-2677.
CHEN J, HE Q. Improved butterfly optimization algorithm based on cosine similarity[J]. Journal of Computer Applications, 2021, 41(9): 2668-2677.
[22] 于涛, 高岳林. 融入小生境和混合变异策略的鲸鱼优化算法[J]. 计算机工程与应用, 2024, 60(10): 88-104.
YU T, GAO Y L. Whale optimization algorithm integrating niche and hybrid mutation strategy[J]. Computer Engineering and Applications, 2024, 60(10): 88-104.
[23] YAO L, YANG J, YUAN P, et al. Multi-strategy improved sand cat swarm optimization: global optimization and feature selection[J]. Biomimetics, 2023, 8(6): 492.
[24] 李奕轩, 田云娜, 王凯欣. 多策略改进的鱼鹰优化算法及其应用[J]. 延安大学学报 (自然科学版), 2024, 43(4): 99-108.
LI Y X, TIAN Y N, WANG K X. Improved osprey optimization algorithm based on multiple strategies and its application[J]. Journal of Yanan University (Natural Science Edition), 2024, 43(4): 99-108.
[25] NADIMI-SHAHRAKI M H, ZAMANI H, MIRJALILI S. Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study[J]. Computers in Biology and Medicine, 2022, 148: 105858.
[26] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946.
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 930-946.
[27] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks, 1995: 1942-1948.
[28] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[29] DEHGHANI M, MONTAZERI Z, TROJOVSKA E, et al. Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2023, 259: 110011.
[30] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734.
[31] DERRAC J, GARCIA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[32] KUMAR A, WU G, ALI M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[J]. Swarm and Evolutionary Computation, 2020, 56: 100693.
[33] ANITHA J, PANDIAN S I A, AGNES S A. An efficient multilevel color image thresholding based on modified whale optimization algorithm[J]. Expert Systems with Applications, 2021, 178: 115003.
[34] LIU M, YAO X, LI Y. Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems[J]. Applied Soft Computing, 2020, 87: 105954.
[35] ABBASI B, MAJIDNEZHAD V, MIRJALILI S. ADE: advanced differential evolution[J]. Neural Computing and Applications, 2024, 36: 15407-15438.
[36] 李大海, 李鑫, 王振东. 融合小生境机制的增强麻雀搜索算法及其应用[J]. 计算机应用研究, 2024, 41(4): 1077-1085.
LI D H, LI X, WANG Z D. Enhanced sparrow search algorithm by integrating niche mechanism and its application [J]. Application Research of Computers, 2024, 41(4): 1077-1085.
[37] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用 [J]. 清华大学学报 (自然科学版), 2024, 64(4): 668-678.
WANG Z Y, WANG L. Improved monarch butterfly optimization algorithm and its engineering application [J]. Journal of Tsinghua University (Science and Technology), 2024, 64(4): 668-678.
[38] WANG J, WANG W, HU X, et al. Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J]. Artificial Intelligence Review, 2024, 57(4): 1-53.
[39] ZHAO S, WU Y, TAN S, et al. QQLMPA: a quasi-opposition learning and Q-learning based marine predators algorithm[J]. Expert Systems With Applications, 2023, 213: 119246. |