计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (19): 1-17.DOI: 10.3778/j.issn.1002-8331.2403-0142

• 热点与综述 • 上一篇    下一篇

基于图神经网络的文本分类方法研究综述

苏易礌,李卫军,刘雪洋,丁建平,刘世侠,李浩南,李贯峰   

  1. 1. 北方民族大学  计算机科学与工程学院,银川  750021
    2. 北方民族大学  图形图像智能处理国家民委重点实验室,银川  750021
    3. 宁夏大学  信息工程学院,银川  750021
  • 出版日期:2024-10-01 发布日期:2024-09-30

Review of Text Classification Methods Based on Graph Neural Networks

SU Yilei, LI Weijun, LIU Xueyang, DING Jianping, LIU Shixia, LI Haonan, LI Guanfeng   

  1. 1. School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
    2. Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
    3. School of Information Engineering, Ningxia University, Yinchuan 750021, China
  • Online:2024-10-01 Published:2024-09-30

摘要: 文本分类是自然语言处理领域中的一个重要任务,旨在将给定的文本数据分配到预定义的一组类别中。传统的文本分类方法只能处理欧氏空间的数据,不能处理图这种非欧氏数据。而对于图结构的文本数据无法直接处理,无法捕捉图中的非欧氏结构。因此,如何将图神经网络应用到文本分类任务中是目前的研究热点之一。对基于图神经网络的文本分类方法进行了综述,概述了基于机器学习和基于深度学习的传统文本分类方法,总结了图卷积神经网络的背景和原理;根据不同类型的图网络详细阐述了基于图神经网络的文本分类方法,同时对图神经网络模型在文本分类中的应用进行了深入分析;对目前基于图神经网络的文本分类模型进行了对比实验,讨论了模型的分类性能;提出了未来的研究方向,以推动该领域的进一步发展。

关键词: 文本分类, 自然语言处理, 图神经网络, 图网络

Abstract: Text classification is an important task in the field of natural language processing, aiming to assign given text data to a predefined set of categories. Traditional text classification methods can only handle data in Euclidean space and cannot process non-Euclidean data such as graphs. For text data with graph structure, it is not directly processable and cannot capture the non-Euclidean structure in the graph. Therefore, how to apply graph neural networks to text classification tasks is one of the current research hotspots. This paper reviews the text classification methods based on graph neural networks. Firstly, it outlines the traditional text classification methods based on machine learning and deep learning, and summarizes the background and principles of graph convolutional neural networks. Secondly, it elaborates on the text classification methods based on graph neural networks according to different types of graph networks, and conducts an in-depth analysis of the application of graph neural network models in text classification. Then, it compares the current text classification models based on graph neural networks through comparative experiments and discusses the classification performance of the models. Finally, it proposes future research directions to further promote the development of this field.

Key words: text classification, natural language processing, graph neural networks, graph networks