[1] SUN L, WANG L Y, DING W P, et al. Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(1): 19-33.
[2] 强倩瑶, 张斌. 灵活自适应的无监督降维[J]. 计算机学报, 2022, 45(11): 2290-2305.
QIANG Q Y, ZHANG B. Flexible and adaptive unsupervised dimensionality reduction[J]. Chinese Journal of Computers, 2022, 45(11): 2290-2305.
[3] 张文静, 王备战, 张志宏. 基于图的特征选择算法综述[J]. 安徽大学学报(自然科学版), 2017, 41(1): 10-20.
ZHANG W J, WANG B Z, ZHANG Z H. A survey of feature selection algorithms based on graph[J]. Journal of Anhui University (Natural Science Edition), 2017, 41(1): 10-20.
[4] 赵亮, 张洁, 陈志奎. 基于双图正则化的自适应多模态鲁棒特征学习[J]. 计算机科学, 2022, 49(4): 124-133.
ZHAO L, ZHAN J, CHEN Z K. Adaptive multimodal robust feature learning based on dual graph-regularization[J]. Computer Science, 2022, 49(4): 124-133.
[5] 李冰晓, 万睿之, 朱永杰, 等. 基于种群分区的多策略综合粒子群优化算法[J].河南师范大学学报 (自然科学版), 2022, 50(3): 85-94.
LI B X, WAN R Z, ZHU Y J, et al. Multi-strategy comprehensive article swarm optimization algorithm based on population partition[J]. Journal of Henan Normal University (Natural Science Edition), 2022, 50(3): 85-94.
[6] 袁立宁, 李欣, 王晓冬, 等. 图嵌入模型综述[J]. 计算机科学与探索, 2022, 16(1): 59-87.
YUAN L N, LI X, WANG X D, et al. Graph embedding models: a survey[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 59-87.
[7] CAI D, ZHANG C Y, HE X F. Unsupervised feature selection for multi-cluster data[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010: 333-342.
[8] 滕少华, 冯镇业, 滕璐瑶, 等. 联合低秩表示与图嵌入的无监督特征选择[J]. 广东工业大学学报, 2019, 36(5): 7-13.
TENG S H, FENG Z Y, TENG L Y, et al. Joint low-rank representation and graph embedding for unsupervised feature selection[J]. Journal of Guangdong University of Technology, 2019, 36(5): 7-13.
[9] 易玉根, 李世成, 裴洋, 等. 联合多流形结构和自表示的特征选择方法[J]. 计算机科学, 2020, 47(S2): 474-478.
YI Y G, LI S C, PEI Y, et al. Feature selection method combined with multi-manifold structures and self-representation[J]. Computer Science, 2020, 47(S2): 474-478.
[10] CAI D, HE X F, HAN J W, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548-1560.
[11] TANG C, LIU X W, LI M M, et al. Robust unsupervised feature selection via dual self-representation and manifold regularization[J]. Knowledge-Based Systems, 2018, 145: 109-120.
[12] ZHU P F, ZUO W M, ZHANG L, et al. Unsupervised feature selection by regularized self-representation[J]. Pattern Recognition, 2015, 48(2): 438-446.
[13] 陈彤, 陈秀宏. 特征自表达和图正则化的鲁棒无监督特征选择[J]. 智能系统学报, 2022, 17(2): 286-294.
CHEN T, CHEN X H. Feature self-representation and graph regularization for robust unsupervised feature selection[J]. CAAI Transactions on Intelligent Systems, 2022, 17(2): 286-294.
[14] HE X, NIYOGI P. Locality preserving projections[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems, 2003: 153-160.
[15] 严菲, 王晓栋. 基于自适应局部保持投影的无监督特征选择方法[J]. 中国科学技术大学学报, 2018, 48(4): 290-297.
YAN F, WANG X D. Unsupervised feature selection method based on adaptive locality preserving projection[J]. Journal of University of Science and Technology of China, 2018, 48(4): 290-297.
[16] 曹浪财, 林晓昌, 苏思行. 基于矩阵分解和自适应图的无监督特征选择[J]. 系统工程与电子技术, 2021, 43(8): 2197-2208.
CAO L C, LIN X C, SU S X. Unsupervised feature selection based on matrix factorization and adaptive graph[J]. Systems Engineering and Electronics, 2021, 43(8): 2197-2208.
[17] YOU M B, BAN L J, WANG Y H, et al. Unsupervised feature selection with joint self-expression and spectral analysis via adaptive graph constraints[J]. Multimedia Tools and Applications, 2023, 82: 5879-5898.
[18] 尚荣华, 徐开明, 焦李成. 基于自适应对偶图与非凸约束的嵌入特征选择[J]. 中国科学: 信息科学, 2021, 51(10): 1640-1657.
SHANG R H, XU K M, JIAO L C. Adaptive dual graphs and non-convex constraint based embedded feature selection[J]. Scientia Sinica Informationis, 2021, 51(10): 1640-1657.
[19] GOU J P, YUAN X, XUE Y, et al. Discriminative and geometry-preserving adaptive graph embedding for dimensionality reduction[J]. Neural Networks, 2023, 157: 364-376.
[20] HE X F, CAI D, NIYOGI P, et al. Laplacian score for feature selection[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems, 2005: 507-514.
[21] YUAN A H, YOU M B, HE D J. Convex non-negative matrix factorization with adaptive graph for unsupervised feature selection[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 5522-5534.
[22] 孙林, 刘梦含, 薛占熬. 结合人工蜂群与K-means聚类的特征选择[J]. 计算机科学与探索, 2024, 18(1): 93-110.
SUN L, LIU M H, XU Z A. Feature selection combining artificial bee colony with k-means clustering[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 93-110. |