[1] PIRANDA D R, SINAGA D Z, PUTRI E E. Online marketing strategy in Facebook marketplace as a digital marketing tool[J]. Journal of Humanities, Social Sciences and Business, 2022, 1(3): 1-8.
[2] HUANG L, CHEN X, ZHANG Y, et al. Identification of topic evolution: network analytics with piecewise linear representation and word embedding[J]. Scientometrics, 2022, 127(9): 5353-5383.
[3] HROVATIN K, FISCHER D S, THEIS F J. Toward modeling metabolic state from single-cell transcriptomics[J]. Molecular Metabolism, 2022, 57: 101396.
[4] YUAN Q M, CHEN J W, ZHAO H Y, et al. Structure-aware protein-protein interaction site prediction using deep graph convolutional network[J]. Bioinformatics, 2022, 38(1): 125-132.
[5] XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19- 24, 2016. New York: ACM, 2016: 478-487.
[6] GUO X F, GAO L, LIU X W, et al. Improved deep embedded clustering with local structure preservation[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19- 25, 2017. New York: ACM, 2017: 1753-1759.
[7] BO D Y, WANG X, SHI C, et al. Structural deep clustering network[C]//Proceedings of the 2020 Web Conference, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 1400-1410.
[8] PENG Z, LIU H, JIA Y H, et al. Attention-driven graph clustering network[C]//Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, Oct 20-24, 2021. New York: ACM, 2021: 935-943.
[9] KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016.
[10] WANG C, PAN S R, HU R Q, et al. Attributed graph clustering: a deep attentional embedding approach[J]. arXiv: 1906.06532, 2019.
[11] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24.
[12] YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//Advances in Neural Information Processing Systems 33, 2020: 5812-5823.
[13] HU Y, YOU H X, WANG Z C, et al. Graph-MLP: node classification without message passing in graph[J]. arXiv:2106. 04051, 2021.
[14] KIPF T, VAN DER POL E, WELLING M. Contrastive learning of structured world models[J]. arXiv:1911.12247, 2019.
[15] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[16] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[17] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[18] HAMILTON W, YING Z T, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, 2017: 1025-1035.
[19] PAN S R, HU R Q, FUNG S, et al. Learning graph embedding with adversarial training methods[J]. IEEE Transactions on Cybernetics, 2019, 50(6): 2475-2487.
[20] KRISHNA K, MURTY M N. Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man and Cybernetics: Part B (Cybernetics), 1999, 29(3): 433-439.
[21] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17: 395-416.
[22] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[23] TIAN F, GAO B, CUI Q, et al. Learning deep representations for graph clustering[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec, Jul 27-31, 2014. Palo Alto: AAAI, 2014.
[24] CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Palo Alto: AAAI, 2016.
[25] WANG C, PAN S R, LONG G D, et al. MGAE: marginalized graph autoencoder for graph clustering[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 889-898.
[26] ZHANG X T, LIU H, LI Q M, et al. Attributed graph clustering via adaptive graph convolution[J]. arXiv:1906.01210, 2019.
[27] HE D X, SONG Y, JIN D, et al. Community-centric graph convolutional network for unsupervised community detection[C]//Proceedings of the 30th International Conference on Artificial Intelligence, Montreal, Aug 19-27, 2021. New York: ACM, 2021: 3515-3521.
[28] ZHANG X T, LIU H, WU X M, et al. Spectral embedding network for attributed graph clustering[J]. Neural Networks, 2021, 142: 388-396.
[29] VELICKOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019.
[30] SALEHI A, DAVULCU H. Graph attention auto-encoders[J]. arXiv:1905.10715, 2019. |