[1] 周炳海, 赵猛. 柔性Job Shops集成调度启发式算法[J]. 浙江大学学报(工学版), 2016, 50(6): 1073-1079.
ZHOU B H, ZHAO M. Hybrid heuristic algorithm for integrated scheduling in flexible Job Shops[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(6): 1073-1079.
[2] 姜天华. 混合灰狼优化算法求解柔性作业车间调度问题[J]. 控制与决策, 2018, 33(3): 503-508.
JIANG T H. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm[J]. Control and Decision, 2018, 33(3): 503-508.
[3] 黄学文, 陈绍芬, 周阗玉, 等. 求解柔性作业车间调度问题的一种新邻域结构[J]. 系统工程理论与实践, 2021, 41(9): 2367-2378.
HUANG X W, CHEN S F, ZHOU T Y, et al. A new neighborhood structure for solving the flexible job-shop scheduling problem[J]. Systems Engineering-Theory & Practice, 2021, 41(9): 2367-2378.
[4] 赵文超, 郭鹏, 王海波, 等. 改进樽海鞘群算法求解柔性作业车间调度问题[J]. 智能系统学报, 2022, 17(2): 376-386.
ZHAO W C, GUO P, WANG H B, et al. Improved slap swarm algorithm for scheduling of flexible job shop[J]. CAAI Transactions on Intelligent Systems, 2022, 17(2): 376-386.
[5] 李中胜, 杨玉中. 基于最小机器数的柔性作业车间调度研究[J]. 计算机工程与应用, 2022, 58(2): 281-288.
LI Z S, YANG Y Z. Research on flexible job shop scheduling based on minimum number of machines[J]. Computer Engineering and Applications, 2022, 58(2): 281-288.
[6] 孟磊磊, 张彪, 任亚平, 等. 求解分布式柔性作业车间调度的混合蛙跳算法[J]. 机械工程学报, 2021, 57(17): 263-272.
MENG L L, ZHANG B, REN Y P, et al. Hybrid shuffled frog-leaping algorithm for distributed flexible job shop scheduling[J]. Journal of Mechanical Engineering, 2021, 57(17): 263-272.
[7] 赵诗奎. 柔性作业车间调度的改进邻域结构混合算法[J]. 计算机集成制造系统, 2018, 24(12): 3060-3072.
ZHAO S K. Hybrid algorithm based on improved neighborhood structure for flexible job shop scheduling[J]. Computer Integrated Manufacturing Systems, 2018, 24(12): 3060-3072.
[8] ZHANG G H, GAO L, SHI Y. An effective genetic algorithm for the flexible job-shop scheduling problem[J]. Expert Systems with Applications, 2011, 38(4): 3563-3573.
[9] WU X L, SHEN X L, LI C B. The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously[J]. Computers & Industrial Engineering, 2019, 135: 1004-1024.
[10] ZHONG C T, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[11] HASSAN M H, KAMEL S, JURADO F, et al. Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer[J]. Alexandria Engineering, 2023, 72: 573-591.
[12] ALSORUJI G S, SADOUN A M, ELAZIZ M A, et al. On the prediction of the mechanical properties of ultrafine grain Al-TiO2 nanocomposites using a modified long-short term memory model with beluga whale optimizer[J]. Journal of Materials Research and Technology, 2023, 23: 4075-4088.
[13] 朱菊香, 谷卫, 钱炜, 等. 基于IF-SVMD-BWO-LSTM的空气质量预测建模[J/OL]. 中国测试, 2023: 1-12(2023-02-07)[2023-08-15]. http://kns.cnki.net/kcms/detail/2051.1714.TB.
20230207.20231749.20230013.html.
ZHU J X, GU W, QIAN W, et al. Modeling of air quality prediction based on IF-SVMD-BWO-LSTM[J/OL]. China Measurement & Test, 2023: 1-12(2023-02-07)[2023-08-15]. http://kns.cnki.net/kcms/detail/2051.1714.TB.20230207.
20231749.20230013.html.
[14] YUAN Y, XU H, YANG J D. A hybrid harmony search algorithm for the flexible job shop scheduling problem[J]. Applied Soft Computing, 2013, 13(7): 3259-3272.
[15] LI X Y, GAO L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[J]. International Journal of Production Economics, 2016, 174: 93-110.
[16] XIE J, LI X Y, GAO L, et al. A new neighbourhood structure for job shop scheduling problems[J]. International Journal of Production Research, 2023, 61(7): 2147-2161.
[17] DAUZèRE-PéRèS S, DING J, SHEN L, et al. The flexible job shop scheduling problem: a review[J]. European Journal of Operational Research, 2024, 314(2): 409-432.
[18] FLORES-GOMEZ M, BORODIN V, DAUZERE-PERES S. Maximizing the service level on the makespan in the stochastic flexible job-shop scheduling problem[J]. Computers & Operations Research, 2023, 157: 106237.
[19] NOWICKI E, SMUTNICKI C. A fast taboo search algorithm for the job shop problem[J]. Management Science, 1996, 42(6): 797-813.
[20] WANG X, GAO L, ZHANG C, et al. A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem[J]. International Journal of Advanced Manufacturing Technology, 2010, 51(5/8): 757-767.
[21] 张其文, 王超. 一种求解柔性作业车间调度问题的改进灰狼优化算法[J]. 兰州理工大学学报, 2022, 48(3): 103-109.
ZHANG Q W, WANG C. An improved grey wolf optimization for solving flexible job shop scheduling problem[J]. Journal of Lanzhou University of Technology, 2022, 48(3): 103-109.
[22] 姜天华. 猫群优化算法求解柔性作业车间调度问题[J]. 计算机工程与应用, 2018, 54(23): 259-263.
JIANG T H. Cat swarm optimization for solving flexible job shop scheduling problem[J]. Computer Engineering and Applications, 2018, 54(23): 259-263.
[23] DING H J, GU X S. Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem[J]. Computers & Operations Research, 2020, 121: 104951. |