[1] 郭旦怀, 张鸣珂, 贾楠, 等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报 (信息科学版), 2020, 45(12): 1890-1902.
GUO D H, ZHANG M K, JIA N, et al. Survey of point-of-interest recommendation research fused with deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1890-1902.
[2] LI Q, XU X, LIU X, et al. An attention-based spatiotemporal GGNN for next POI recommendation[J]. IEEE Access, 2022, 10: 26471-26480.
[3] FENG S, CONG G, AN B, et al. POI2Vec: geographical latent representation for predicting future visitors[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017: 102-108.
[4] HU R, LU X, LIU C, et al. Why we go where we go: profiling user decisions on choosing POIs[C]//Proceedings of the 29th International Conference on International Joint Conferences on Artificial Intelligence, 2021: 3459-3465.
[5] 孟祥武, 李瑞昌, 张玉洁, 等. 基于用户轨迹数据的移动推荐系统研究[J]. 软件学报, 2018, 29(10): 3111-3133.
MENG X W, LI R C, ZHANG Y J, et al. Survey on mobile recommender systems based on user trajectory data[J]. Journal of Software, 2018, 29(10): 3111-3133.
[6] MNIH A, SALAKHUTDINOV R R. Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems, 2007: 1257-1264.
[7] CHENG C, YANG H, KING I, et al. Fused matrix factorization with geographical and social influence in location-based social networks[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012: 17-23.
[8] YE M, YIN P, LEE W C, et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2011: 325-334.
[9] LEVANDOSKI J J, SARWAT M, ELDAWY A, et al. LARS: a location-aware recommender system[C]//Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, 2012: 450-461.
[10] KURASHIMA T, IWATA T, HOSHIDE T, et al. Geo topic model: joint modeling of user’s activity area and interests for location recommendation[C]//Proceedings of the 6th ACM International Conference on Web Search and Data Mining, 2013: 375-384.
[11] LIAN D, ZHAO C, XIE X, et al. GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 831-840.
[12] YUAN Q, CONG G, MA Z, et al. Time-aware point-of-interest recommendation[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2013: 363-372.
[13] GAO H, TANG J, HU X, et al. Exploring temporal effects for location recommendation on location-based social networks[C]//Proceedings of the 7th ACM Conference on Recommender Systems, 2013: 93-100.
[14] QUADRANA M, KARATZOGLOU A, HIDASI B, et al. Personalizing session-based recommendations with hierarchical recurrent neural networks[C]//Proceedings of the 11th ACM Conference on Recommender Systems, 2017: 130-137.
[15] 陈建廷, 向阳. 深度神经网络训练中梯度不稳定现象研究综述[J]. 软件学报, 2018, 29(7): 2071-2091.
CHEN J T, XIANG Y. Survey of unstable gradients in deep neural network training[J]. Journal of Software, 2018, 29(7): 2071-2091.
[16] GRAVES A. Long short-term memory[M]//Supervised sequence labelling with recurrent neural networks. Berlin, Heidelberg: Springer, 2012: 37-45.
[17] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014.
[18] 李全, 李书明, 许新华, 等. 融合时空信息的双向GRU下一个地点推荐[J]. 小型微型计算机系统, 2021, 42(7): 1402-1406.
LI Q, LI S M, XU X H, et al. Next location recommendation based on bi-directional GRU confusing space and time information[J]. Journal of Chinese Computer Systems, 2021, 42(7): 1402-1406.
[19] YUAN Q, CONG G, SUN A. Graph-based point-of-interest recommendation with geographical and temporal influences[C]//Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, 2014: 659-668.
[20] ZHANG Y F, CHEN X. Explainable recommendation: a survey and new perspectives[J]. Foundations and Trends in Information Retrieval, 2020, 14(1): 1-101.
[21] ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 635-644.
[22] SU Y, LI X, ZHA D, et al. HREC: heterogeneous graph embedding-based personalized point-of-interest recommendation[C]//Proceedings of the 26th International Conference on Neural Information Processing, 2019: 37-49.
[23] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the Semantic Web: 15th International Conference, 2018: 593-607.
[24] CHO E, MYERS S A, LESKOVEC J. Friendship and mobility: user movement in location-based social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011: 1082-1090.
[25] LIU Q, WU S, WANG L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016: 194-200. |