[1] 许晓明, 梅红岩, 于恒, 等. 基于偏好融合的群组推荐方法研究综述[J]. 小型微型计算机系统, 2020, 41(12): 2500-2508.
XU X M, MEI H Y, YU H, et al. Research review of group recommendation methos based on preference fusion[J]. Small Microcomputer System, 2020, 41(12): 2500-2508.
[2] 黄际洲, 孙雅铭, 王海峰, 等. 面向搜索引擎的实体推荐综述[J]. 计算机学报, 2019, 42(7): 1467-1494.
HUANG J Z, SUN Y M, WANG H F, et al. A survey of entity recommendation in Web search[J]. Journal of Computer Science, 2019, 42(7): 1467-1494.
[3] FELFERNIG A, BORATTO L, STETTINGER M, et al. Algorithms for group recommendation[M]//Group recommender systems. Cham: Springer, 2018: 27-58.
[4] MOVAGHAR A. Centrality-based group formation in group recommender systems[C]//Proceedings of the 26th International Conference on World Wide Web Companion, 2017: 1187-1196.
[5] BORATTO L, CARTA S. State-of-the-art in group recommendation and new approaches for automatic identification of groups[M]. Information retrieval and mining undistributed environments. Berlin, Heidelberg: Springer, 2010: 1-20.
[6] GHAEMMAGHAMI S S, SALEHI-ABARI A. DeepGroup: group recommendation with implicit feedback[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 3408-3412.
[7] HUANG Z H, XU X, ZHU H H, et al. An efficient group recommendation model with multiattention-based neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4461-4474.
[8] HUANG Z, LIU Y, ZHAN C, et al. A novel group recommendation model with two-stage deep learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(9): 1-12.
[9] WANG J K, JIANG Y C, SUN S, et al. Group recommendation based on a bidirectional tensor factorization model[J]. World Wide Web, 2018, 21(4): 961-984.
[10] YUAN Q, CONG G, LIN C Y. COM: a generative model for group recommendation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 163-172.
[11] GUO L, YIN H Z, CHEN T, et al. Hierarchical hyperedge embedding-based representation learning for group recommendation[J]. ACM Transactions on Information Systems, 2022, 40(1): 1-27.
[12] HE Z X, CHOW C Y, ZHANG J D, et al. GRADI: towards group recommendation using attentive dual top down and bottom-up influences[C]//Proceedings of the IEEE International Conference on Big Data, 2019: 631-636.
[13] TRAN L V, PHARM T A N, TAY Y, et al. Interact and decide: medley of sub-attention networks for effective group recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 255-264.
[14] CAO D, HE X N, MIAO L H, et al. Attentive group recommendation[C]//Proceedings of the 42st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 645-654.
[15] 刘浩翰, 任洪润, 贺怀清. 一种基于自注意力机制的组推荐方法[J]. 计算机应用研究, 2020, 37(12): 3527-3577.
LIU H H, REN H R, HE H Q. Group recommendation method based on self-attention mechanism[J]. Application Research of Computers, 2020, 37(12): 3527-3577.
[16] ZHANG J W, GAO M, YU J L, et al. Double-scale self-supervised hypergraph learning for group recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 2557-2567.
[17] SANKAR A, WU Y H, WU Y H, et al. GroupIM: a mutualinformation maximization framework for neural group recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 1279-1288.
[18] ZHANG J, GAO C, JIN D, et al. Group-buying recommendation for social e-commerce[J]. arXiv:2010.06848, 2020.
[19] CHEN T, YIN H Z, LONG J, et al. Thinking inside the box: learning hypercube representations for group recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 1664-1673.
[20] JIA R Q, ZHOU X F, DONG L H, et al. Hypergraph convolution network for group recommendation[C]//Proceedings of the 2021 IEEE International Conference on Data Mining, 2021: 260-269.
[21] ZHOU L J, DANG J W, ZHANG Z H. Fault classification for on-board equipment of high-speed railway based on attention capsule network[J]. International Journal of Automation and Computing, 2021, 18(5): 814-825.
[22] GAO G S. A review of attention mechanism research in deep learning recommendation models[J]. Computer Engineering and Applications, 2022, 58(9): 9-18.
[23] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 639-648.
[24] HE Z X, CHOW C Y, ZHANG J D. GAME: learning graphical and attentive multi-view embeddings for occasional group recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 649-658.
[25] CREMONESI P, KOREN Y, TURRIN R. Performance of recommender algorithms on top-n recommendation tasks[C]//Proceedings of the 4th ACM Conference on Recommender Systems, 2020: 39-46.
[26] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, 2017: 173-182.
[27] ZHANG S, ZHENG N, WANG D L. A novel attention-based global and local information fusion neural network for group recommendation[J]. Machine Intelligence Research, 2022, 19(4): 331-346.
[28] MA C, KANG P, LIU X. Hierarchical gating networks for sequential recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 825-833. |